См. рисунок в приложении Пусть ребро АА₁ образует со сторонами основания АВ и AD угол в 60°. Соединяем точку А₁ с точкой D. В треугольнике АА₁D AA₁=2 м AD=1 м ∠A₁AD=60° По теореме косинусов A₁D²=AA₁²+AD²-2·AA·₁AD·cos60°=4+1-2·2·1(1/2)=3 A₁D=√3 м Треугольник A₁AD- прямоугольный по теореме обратной теореме Пифагора: АА₁²=AD²+A₁D² 2²=1+( √3 )² A₁D⊥AD В основании квадрат, стороны квадрата взаимно перпендикулярны АС⊥AD Отсюда AD⊥ плоскости A₁CD ВС || AD BC ⊥ плоскости A₁CD
ВС⊥A₁C
A₁C перпендикулярна двум пересекающимся прямым ВС и СD плоскости АВСD По признаку перпендикулярности прямой и плоскости А₁С перпендикуляр к плоскости АВСD A₁C - высота призмы A₁C=Н Из прямоугольного треугольника A₁DC: А₁С²=А₁D²-DC²=(√3)²-1=3-1=2 A₁C=Н=√2 м
1) Если прямые пересекаются, то координаты в точке пересечения совпадают.
у = х + 4 и у = -2х - 5.
Приравняем значения у:
х + 4 = -2х - 5;
х + 2х = -4 - 5;
3х = -9;
х = -9/3 = -3.
Вычислим значение х: у = х + 4; у = -3 + 4 = 1.
Координаты точки О(-3; 1).
2) Уравнение окружности имеет вид (х - х0)^2 + (y - y0)^2 = R^2, где х0 и у0 - это координаты центра окружности, а R - длина радиуса.
Координаты центра О(-3; 1).
Окружность проходит через точку А(1; -2), значит, ОА - это радиус. Вычислим расстояние между точками А и О по формуле ОА^2 = (x1 - x2)^2 + (y1 - y2)^2.
Пусть ребро АА₁ образует со сторонами основания АВ и AD угол в 60°.
Соединяем точку А₁ с точкой D.
В треугольнике АА₁D
AA₁=2 м
AD=1 м
∠A₁AD=60°
По теореме косинусов A₁D²=AA₁²+AD²-2·AA·₁AD·cos60°=4+1-2·2·1(1/2)=3
A₁D=√3 м
Треугольник A₁AD- прямоугольный
по теореме обратной теореме Пифагора:
АА₁²=AD²+A₁D² 2²=1+( √3 )²
A₁D⊥AD
В основании квадрат, стороны квадрата взаимно перпендикулярны
АС⊥AD
Отсюда AD⊥ плоскости A₁CD
ВС || AD
BC ⊥ плоскости A₁CD
ВС⊥A₁C
A₁C перпендикулярна двум пересекающимся прямым ВС и СD плоскости АВСD
По признаку перпендикулярности прямой и плоскости А₁С перпендикуляр к плоскости АВСD
A₁C - высота призмы
A₁C=Н
Из прямоугольного треугольника
A₁DC:
А₁С²=А₁D²-DC²=(√3)²-1=3-1=2
A₁C=Н=√2 м
S(параллелепипеда)=S(осн)·Н=АВ²·Н=1·√2=√2 куб. м
1) Если прямые пересекаются, то координаты в точке пересечения совпадают.
у = х + 4 и у = -2х - 5.
Приравняем значения у:
х + 4 = -2х - 5;
х + 2х = -4 - 5;
3х = -9;
х = -9/3 = -3.
Вычислим значение х: у = х + 4; у = -3 + 4 = 1.
Координаты точки О(-3; 1).
2) Уравнение окружности имеет вид (х - х0)^2 + (y - y0)^2 = R^2, где х0 и у0 - это координаты центра окружности, а R - длина радиуса.
Координаты центра О(-3; 1).
Окружность проходит через точку А(1; -2), значит, ОА - это радиус. Вычислим расстояние между точками А и О по формуле ОА^2 = (x1 - x2)^2 + (y1 - y2)^2.
ОА^2 = (-3 - 1)^2 + (1 - (-2))^2 = (-4)^2 + 3^2 = 16 + 9 = 25.
ОА = √25 = 5.
Уравнение окружности имеет вид (х + 3)^2 + (y - 1)^2 = 25.