Проекции точек D и С на плоскость а - это перпендикуляры DD1 и СС1, опущенные из точек D и С на плоскость а. Соединив точки А, В, С1 и D1 получим проекцию нашего ромба АВСD на плоскость а. Это будет параллелограмм АВС1D1 с противоположными сторонами АВ, С1D1 и ВС1, АD1 . В прямоугольном треугольнике АНD DH=AD*Sinф. Если Sinф=√5/4, то DН=9*√5/4. Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения. В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16. S=9*45√3/16=405√3/16
1.Треугольник ABD = 1. Угол ВАD = CAD
2. BDA=CDA
треугольнику ADC
3.AD - общая сторона.
Второй признак равенства
треугольников
2.
Углы 1 и 2 вертикальные, значит они
равны, следовательно треугольники, по двум углам и стороне, равны. Исходя из этого, СD делиться попалам в точки О
3.
<АСО=<1 как вертикальные углы.
<BDO=<2 как вертикальные углы. Но
<1=<2, значит
<ACO=<BDO.
<AOC=<BOD как вертикальные углы.
Значит, треугольники АСО и BDO
равны по второму признаку: сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней
углам другого треугольника: - ОС=ОD по условию;
- <ACO=<BDO как доказано выше;
.<AOC=<BOD как доказано выше. У равных треугольников АСО и BDO равны соответственные углы А и В.
4.
Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения.
В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16.
S=9*45√3/16=405√3/16