1.Прямая а, параллельная прямой b, пересекает плоскость α. Прямая с параллельна прямой b, тогда: г) прямые а и с параллельны. 2. Каким может быть взаимное расположение прямых а и b, если через прямую а можно провести плоскость, параллельную прямой b? г) только параллельны. 3. Прямые а и в лежат в параллельных плоскостях, следовательно эти прямые г) только параллельны. 4. Каким может быть взаимное расположение двух прямых, если обе они параллельны одной плоскости? а) только параллельны; 5. Прямая а параллельна плоскости α. Какое из следующих утверждений верно? а) Прямая а параллельна любой прямой, лежащей в плоскости α; б) прямая а не пересекает ни одну прямую, лежащую в плоскости α;
Решение: Пусть ABCDA1B1C1D1 – данный параллелепипед, площадь диагонального сечения ACC1A1 равна P, а диагонального сечения BDD1B1 равна Q. Тогда
AC*h=P, BD*h=Q, где – h высота параллелепипеда (так как диагональные сечения прямого параллелепип
еда - прямоугольники)
Отсюда отношение диагоналей AC:BD=P:Q.
Пусть О – точка пересечния диагоналей ромба.
Диагонали ромба(как параллелограмма) пересекаются и в точке пересечения делятся пополам:
Диагонали ромба пересекаются под прямым углом (свойство ромба).
Поэтому
AO:BO=(1\2*AC) : (1\2*BD)=P:Q
Пусть AO=P*x, тогда BO=Q*x, AC=2P*x, BD=2Q*x
по теореме Пифагора:
AB=корень (AO^2+BO^2)= корень (AO^2+BO^2)= корень ((P*x)^2+(Q*x)^2)=
= корень (P^2+Q^2)*х
AC*h=P, BD*h=Q, значит
2P*x*h+2Q*x*h=P+Q
2(P+Q)*x*h=P+Q
h=1\2*1\x
Площадь боковой поверхности равна 4* AB*h=
=4* корень (P^2+Q^2)*х*1\2*1\x=2*корень (P^2+Q^2).
ответ: 2*корень (P^2+Q^2).
г) прямые а и с параллельны.
2. Каким может быть взаимное расположение прямых а и b, если через прямую а можно провести плоскость, параллельную прямой b?
г) только параллельны.
3. Прямые а и в лежат в параллельных плоскостях, следовательно эти прямые
г) только параллельны.
4. Каким может быть взаимное расположение двух прямых, если обе они параллельны одной плоскости?
а) только параллельны;
5. Прямая а параллельна плоскости α. Какое из следующих утверждений верно?
а) Прямая а параллельна любой прямой, лежащей в плоскости α;
б) прямая а не пересекает ни одну прямую, лежащую в плоскости α;