В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
dbblyadbblya
dbblyadbblya
28.11.2020 12:53 •  Геометрия

Точка q - центр окружности, касающейся стороны bc и продолжении сторон ab и ac треугольника abc, точка o - центр окружности w, описанной около треугольника bqc. а) докажите, что точка o лежит на окружности, описанной около треугольника abc б) найдите косинус угла bac, если радиус окружности w, относится к радиусу окружности, описанной около треугольника abc, как 4: 3

Показать ответ
Ответ:
syltan502
syltan502
08.10.2020 09:23
А). Цитата: "Существование и единственность вневписанной
окружности обусловлены тем, что биссектрисы двух внешних углов
треугольника и биссектриса внутреннего угла, не смежного с этими
двумя, пересекаются в одной точке, которая и является центром
такой окружности".
В треугольнике АВС <ABC+<BCA=180°-<A.
<ABC=180°-<CBP,  <BCA=180°-BCK - как пары соответственно смежных
углов.
Окружность (Q;R) - вневписанная окружность треугольника АВС по
определению (из условия). Следовательно, BQ и СQ - биссектрисы углов <CBP и <BCK соответственно.
Тогда <BQC=180°-(1/2)*(CBP+BCK)=180°-(1/2)*(360°-<ABC-<BCA). Или
<BQC=(1/2)*(<ABC+<BCA).
Но <BQC - вписанный угол, опирающийся на дугу ВС, а
<BOC- центральный угол, опирающийся на ту же дугу.
<BOC=2*<BQC = <ABC+<BCA = 180°-<A.
Тогда в четырехугольнике АВОС сумма противоположных углов
<А+<BOC=<A+180°-<A = 180°. Значит около этого четырехугольника
можно описать окружность и при том только одну.
Следовательно, окружности, описанные около треугольника АВС и
четырехугольника АВОС - одна и та же окружность и точка О лежит
на этой окружности, что и требовалось доказать.

б). Пусть R/r=4/3.  r=(3/4)*R.
<А+<BOC= 180° (доказано выше).
CosA = -Cos(180-A) = -Cos(BOC).
ВС - общая хорда пересекающихся окружностей.
По теореме косинусов из треугольника ОВС:
BC²=2R² - 2R²Cos(BOC)=2R²+ 2R²CosA=2R²(1+CosA) . (1)
Bз треугольника AВС:
<BJC - центральный угол, опирающийся на ту же дугу, что и <BAC.
<BJC=2<A.
BC²=2r² - 2r²Cos(BJC)=2r²(1-Cos2A) . (2)
Приравняем (1) и (2):
2R²(1+CosA)=2r²(1-Cos2A)  или
2R²(1+CosA)=2(9/16)R²(1-Cos2A)  или
(1+CosA)=(9/16)(1-Cos2A).
По формуле приведения Cos2A= 2Cos²A-1, тогда
1+CosA=(9/16)(1-2Cos²A+1) => 1+CosA=(9/8)(1-Cos²A).
Пусть CosA= Х, тогда:
8+8Х=9-9Х²  или
9Х²+8Х-1=0
Х1=(-4+√(16+9))/9 = 1/9.
Х2=-1 - не удовлетворяет условию, так как <A > 0.
ответ: CosA=1/9.

Точка q - центр окружности, касающейся стороны bc и продолжении сторон ab и ac треугольника abc, точ
Точка q - центр окружности, касающейся стороны bc и продолжении сторон ab и ac треугольника abc, точ
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота