Точка пересечения O — серединная точка для обоих отрезков PG и RS.
Найди величину сторон PR и RO в треугольнике PRO, если GS = 34,7 см и SO = 23 см
(При ответе упорядочи вершины таким образом, чтобы углы при них были попарно равны.)
PS1.png
А. Так как отрезки делятся пополам, то
1. сторона RO в треугольнике PRO равна стороне в треугольнике GSO;
2. сторона PO в треугольнике PRO равна стороне в треугольнике GSO.
Угoл ROP равен углу как вертикальный угол.
Треугольники равны по первому признаку равенства треугольников.
В равных треугольниках соответствующие стороны равны.
PR =
см;
Объяснение:
1. Точка Т – середина отрезка МР. Найдите координаты точки Р,
если Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра окружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3. Дано: A(2;4)Bина отрезка МР. Найдите координаты точки Р,
если Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра окружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3Найдите координаты точки Р,
если Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра окружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3. Дано: A(2;4)B(-2;3)C(-1;5) Напишите уравнение медианы ВМ.
Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра одите координаты точки Р,
если Т (-2;4) и М (-6; -7).
2. a)АВ – диаметр окружности с центром О. Найдите координаты центра окружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3. Дано: A(2;4)B(-2;3)C(-1;5) Напишите уравнение медианы ВМ.
4.Точки А(-3;-4), В(5;-4), С(5;8), D(-3;-1) – вершины прямоугкружности, если А (9; -2) и В (-1;-6).
b)Запишите уравнение окружности, используя условия пункта а).
3. Дано: A(2;4)B(-2;3)C(-1;5) Напишите уравнение медианы ВМ.
4.Точки А(-3;-4), В(5;-4
4.Точки А(-3;-4), В(5;-4), С(5;8), D(-3;-1) – вершины прямоугольной трапеции с основаниями ВC . Дано: A(2;4)B(-2;3)C(-1;5) Напишите уравнение медианы ВМ.
4.Точки А(-3;-4), В(5;-4), С(5;8), D(-3;-1) – вершины прямоугольной трапеции с основаниями ВC и АD, А(-2;3)C(-1;5) Напишите уравнение медианы В
В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
∠BDC= ∠ABC ← условие
∠C _общий угол
BC/AC =DC/BC = BD / AB =P(∆BDC)/P(∆ABC)
BC² =AC *DC=12*3 =36 ⇒ BC=6 ; P(∆BDC)/P(∆ABC) =BC/AC=6/12 =1: 2
BC/AC = BD / AB ⇒ BD =(BC/AC)*ABС =(6/12)*8 = 4 ;
P(∆ ABC) =AB++AC+BC =8+12+6 =26 ;
P(∆BDC) = (1/2)*P(∆ABC) =(1/2)*26 =13 или 3+4+6 =13 .