Точка O - центр правильного шестиугольника ABCDEF (рис. 19.26). Укажите образы стороны AF, диагонали BF, диагонали AD, шестиугольника ABCDEF при повороте вокруг точки O по часовой стрелке на угол: 1) 60 ° 2) 120 °
Из условия задачи СО=АО=ДО=ВО как радиуси круга и угли /_СОВ=/_АОД как вертикальние
По признакам подобия △, за двумя сторонами и углом между ними треугольник СОВ и АОД подобни и равни, так кск сторони равни. Поетому в треугольниках СОВ и АОД равни соответствующие угли. /_ОАД=/_ОВС, с другой сторони ети угли являются внутренними разносторонними углами прямих СВ, АД и секущей АВ. Так как ети угли равни, то по признаку паралельности СВ||АД.
Равенство углов /_ОАД=/_ОВС можно доказать также и другим : така как треугольники АОД и СОВ равнобедренние, по условию, то угли при основании одинаковие. Так как /_ АОД=/_СОВ, то все угли при основании треугольников - равни.
Не верно, половине произведения его основания на высоту.
2. Гипотенуза равна сумме квадратов катетов.
Не верно: квадрат гипотенузы равен сумме квадратов катетов.
3. Если 2 угла одного треугольника равны 2-ум углам другого треугольника, то эти треугольники подобны.
Верно.
4. Диагонали ромба точкой пересечения делятся пополам.
Верно.
5. Площадь квадрата равна квадрату его диагонали.
Не верно, половине квадрата его диагонали.
6. Площадь трапеции равна произведению ее средней линии на высоту.
Верно.
7. Сумма углов треугольника равна 360°
Не верно. 180°.
8. Катет всегда больше гипотенузы.
Не верно. Гипотенуза всегда больше катета.
9. Все равнобедренные треугольники равны.
Не верно.
10. Все углы правильного шестиугольника равны 135°.
Не верно. 120°.
Відповідь:
Пояснення:
Рассмотрим два треугольника СОВ и АОД
Из условия задачи СО=АО=ДО=ВО как радиуси круга и угли /_СОВ=/_АОД как вертикальние
По признакам подобия △, за двумя сторонами и углом между ними треугольник СОВ и АОД подобни и равни, так кск сторони равни. Поетому в треугольниках СОВ и АОД равни соответствующие угли. /_ОАД=/_ОВС, с другой сторони ети угли являются внутренними разносторонними углами прямих СВ, АД и секущей АВ. Так как ети угли равни, то по признаку паралельности СВ||АД.
Равенство углов /_ОАД=/_ОВС можно доказать также и другим : така как треугольники АОД и СОВ равнобедренние, по условию, то угли при основании одинаковие. Так как /_ АОД=/_СОВ, то все угли при основании треугольников - равни.