Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Точка пересечения диагоналей - центр ромба и она делит высоту ромба так же пополам. В прямоугольном треугольнике, образованном половинами диагоналей и стороной ромба, катеты относятся как 3:4, значит треугольник Пифагоров (или египетский) и отношение сторон в нем равно 3:4:5. Пусть коэффициент отношения равен Х. Тогда по свойству высоты из прямого угла в этом треугольнике имеем: 12 = 3х*4х/5х => х = 5см.
Половины диагоналей равны 3х = 15см и 4х=20см, а диагонали, соответственно, равны d=30см и D=40см.
Площадь ромба равна половине произведения его диагоналей.
У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Точка пересечения диагоналей - центр ромба и она делит высоту ромба так же пополам. В прямоугольном треугольнике, образованном половинами диагоналей и стороной ромба, катеты относятся как 3:4, значит треугольник Пифагоров (или египетский) и отношение сторон в нем равно 3:4:5. Пусть коэффициент отношения равен Х. Тогда по свойству высоты из прямого угла в этом треугольнике имеем: 12 = 3х*4х/5х => х = 5см.
Половины диагоналей равны 3х = 15см и 4х=20см, а диагонали, соответственно, равны d=30см и D=40см.
Площадь ромба равна половине произведения его диагоналей.
S = 30*40/2 = 600см².