Точка m лежит на стороне bc треугольника abc, причём bm: bc=1: 4.на продолжении стороны ac за точку c взята точка n, так что an: cn=3: 1.прямая mn пересекает сторону ab треугольника abc в точке k.найдите отношение ak: kb.
По теореме Менелая: (АК/КВ)*(BM/MC)*(CN/NA)=1. ВМ/ВС=1/4 => ВМ/МС = 1/3. AN/CN=3/1 => CN/AN=1/3. Тогда (АК/КВ)*(1/3)*(1/3)=1. АК/КВ = 9/1.
Доказательство теоремы: Проведем через точку C прямую, параллельную AB. Обозначим через Р ее точку пересечения с прямой KN. Треугольники AKN и CPN подобны (< KAN=<PCN, < AKN=<CPN). Следовательно, AK/CP=NA/NC (1). Треугольники BKM и CPM подобны (< BMK=<CMP, < BKM=<CPM). Следовательно, KB/CP=BM/MC (2). Из (1) СР=AK*NC/NA. Из (2) СР=КВ*МС/ВМ. Тогда AK*NC/NA = КВ*МС/ВМ и (AK*NC/NA)/(КВ*МС/ВМ)=1. Или (АК/КВ)*(ВМ/МС)*(NC\NA)=1. Что и требовалось доказать.
(АК/КВ)*(BM/MC)*(CN/NA)=1.
ВМ/ВС=1/4 => ВМ/МС = 1/3.
AN/CN=3/1 => CN/AN=1/3.
Тогда
(АК/КВ)*(1/3)*(1/3)=1.
АК/КВ = 9/1.
Доказательство теоремы:
Проведем через точку C прямую, параллельную AB. Обозначим через Р ее точку пересечения с прямой KN.
Треугольники AKN и CPN подобны (< KAN=<PCN,
< AKN=<CPN). Следовательно, AK/CP=NA/NC (1).
Треугольники BKM и CPM подобны (< BMK=<CMP, < BKM=<CPM). Следовательно, KB/CP=BM/MC (2).
Из (1) СР=AK*NC/NA.
Из (2) СР=КВ*МС/ВМ.
Тогда AK*NC/NA = КВ*МС/ВМ и
(AK*NC/NA)/(КВ*МС/ВМ)=1. Или
(АК/КВ)*(ВМ/МС)*(NC\NA)=1.
Что и требовалось доказать.