Точка M делит гипотенузу AB прямоугольного треугольника ABC на отрезки AM = 15 и MB = 20. Прямая, проходящая через точку E и параллельная катету BC, пересекает катет AC в точке D так, что длины отрезков AD и DC равны. Найти периметр треугольника ABC.
Есл ВМ - биссектриса треугольника, то делит уго СВД пополам, тогда ∠ДВМ=∠СВМ=60°/2=30°
а против угла в 30° лежит катет, равный половине гипотенузы, значит, ВМ=16 см, т.к. в ΔВСМ ВС - гипотенуза, и из этого треугольника найдем катет ВС =√(ВМ²-СМ²)=√(16²-8²)=√(24*8)=8√3 /см/
Из ΔВСД ВС лежит против угла в 30°, значит, равен половине гипотенузы ВД, т.е. ВД= 16√3
И наконец из того же треугольника находим
СД=√(ВД²-ВС²)=√(16²*3-8²*3)=√(3*(16-8)()16+8))=√(3*8*24)=24/см/
ответ 24 см Можно решать через тригонометрию, но не знаю, проходили ли Вы этот материал. А теорему ПИфагора знают все.)
1) ABCD - ромб , AB=BC=CD=AD=4 см , ВМ=2√3 см ,
∠АВС=150° ⇒ ∠BAD=180°-150°=30°
Проведём ВН⊥AD , ∠BHA=90° .
Из ΔАВН: ВН=АВ*sin30°=4*(1/2)=2 (см) .
МВ⊥ пл. АВСD ⇒ МВ⊥ любой прямой, лежащей в пл. ABCD ⇒
MB⊥BH ⇒ ΔАВН - прямоугольный , ∠МВН=90° ⇒ ΔМВН - прямоугольный.
Проведём отрезок МН, он будет наклонной, ВН - его проекция на плоскость АВСD , причём проекция ВН ⊥АD ⇒ по теореме о трёх перпендикулярах МН⊥AD , значит МН - расстояние от точки М до прямой AD.
МН найдём из прямоугольного ΔВНМ по теореме Пифагора:
МН=√(ВН²+ВМ²)=√(4+4*3)=√16=4 (см) .