Сделаем рисунок. АВ - общая касательная. IJ- отрезок, соединяющий центры. О - точка пересечения этого отрезка и касательной. IA - радиус большей окружности, JB - радиус меньшей окружности. Вариант решения 1) Как радиусы, проведенные в точку касания, IA и JB перпендикулярны касательной АВ. Прямоугольные треугольники OIA и OJB подобны по двум углам - прямому и вертикальному при О. Все стороны этих треугольников имеют коэффициент подобия k=m:n ⇒ IA:JB=m:n Ясно, что отношение диаметров данных окружностей равно отношению их радиусов, т.е. АС:ВD=m:n.
Вариант решения 2) СА ⊥АВ BD ⊥АВ ⇒ СА и BD- параллельны. Углы С и D равны как накрестлежащие при пересечении параллельных прямых секущей.. Углы при О равны, как вертикальные. Треугольники АСO и DBO подобны по трем углам. OI OJ- медианы этих треугольников. Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия. Следовательно, отношение диаметров данных окружностей ( гипотенуз треугольников) равно отношению их медиан, т.е. АС:ВD=m:n.
См. рисунок. думаю, будет понятно. Задачка , вроде, не трудная. итак, СК=СВ - треуг. ВСК равнобедр, углы при его основании равны. Я их обозначил AL- биссектриса, то равные углы я обозначил как
АN=NL значит, т. N для прямоуг.треугольника ACL является центром описанной окружности, значит, AN=NL=NC , значит, треуг. ANC равнобедренный, и углы при основании равны , и равны тепиерь, угол СКВ внешний для треуг. АКС, значит угол СКВ== из прямоуг. треуг. АВС угол А+угол В=90
АВ - общая касательная.
IJ- отрезок, соединяющий центры.
О - точка пересечения этого отрезка и касательной.
IA - радиус большей окружности, JB - радиус меньшей окружности.
Вариант решения 1)
Как радиусы, проведенные в точку касания, IA и JB перпендикулярны касательной АВ.
Прямоугольные треугольники OIA и OJB подобны по двум углам - прямому и вертикальному при О. Все стороны этих треугольников имеют коэффициент подобия
k=m:n ⇒
IA:JB=m:n
Ясно, что отношение диаметров данных окружностей равно отношению их радиусов, т.е. АС:ВD=m:n.
Вариант решения 2)
СА ⊥АВ
BD ⊥АВ ⇒
СА и BD- параллельны.
Углы С и D равны как накрестлежащие при пересечении параллельных прямых секущей.. Углы при О равны, как вертикальные.
Треугольники АСO и DBO подобны по трем углам.
OI OJ- медианы этих треугольников.
Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.
Следовательно, отношение диаметров данных окружностей ( гипотенуз треугольников) равно отношению их медиан, т.е. АС:ВD=m:n.
итак, СК=СВ - треуг. ВСК равнобедр, углы при его основании равны. Я их обозначил
AL- биссектриса, то равные углы я обозначил как
АN=NL значит, т. N для прямоуг.треугольника ACL является центром описанной окружности, значит, AN=NL=NC , значит, треуг. ANC равнобедренный, и углы при основании равны , и равны
тепиерь, угол СКВ внешний для треуг. АКС, значит угол СКВ==
из прямоуг. треуг. АВС угол А+угол В=90