Точка K лежит на стороне AD выпуклого четырёхугольника ABCD и делит ее в отношении 1:3, считая от вершины A. Известно, что площади треугольников АВК, ВКС и КСD состоят в пропорции 1:3:3 соответственно. Определить, в каком отношении отрезок КС делит диагональ четырёхугольника BD.
точка пересечения диагоналей параллелограмма - О, точка пересечения диагоналей четырехугольника А₁В₁С₁Д₁ -О₁.
рассмотри четырехугольник АА₁С₁С: АА₁ параллельна СС₁(2 перпендикуляра к одной плоскости параллельны), => АА₁С₁С-трапеция. ОО₁- средняя линия, ОО₁=(1/2)*(АА₁+СС₁)
ОО₁=(1/2)*(6+10), ОО₁=8см
рассмотрим четырехугольник ВВ₁Д₁Д: ВВ₁ параллельна ДД₁, ВВ₁Д₁Д-трапеция, ОО₁ - средняя линия
ОО₁=(1/2)*(ВВ₁+ДД₁), 8=(1/2)*(9+ДД₁), 16=9+ДД₁, ДД₁=7
ответ: ДД₁=7см
2. Соединить точки пересечения окружности со сторонами угла.
3. Разделить пополам полученный отрезок для построения биссектрисы. Для этого провести две окружности с центрами в этих точках и радиусом, большим, чем длина соединяющего их отрезка. 2 точки пересечения этих окружностей между собой соединить и провести через них биссектрисы.
4. Точка пересечения получившейся биссектрисы и окружности из 1) пункта и есть наша искомая точка.