Точка Е - середина стороны треугольника АВС. На стороне АВ отметили точку К так, что КЕ = 1/2ВС. Известно, что угол СВК = 15 (градусов), угол АСК = 80 (градусов. Найдите углы треугольника. Фастом
Объяснение: так как углы при основании составляют 45° каждый, то они находятся у нижнего основания и эта это трапеция равнобедренная. Обозначим основание, которое нужно найти -х. Проведём к нижнему основанию высоту с двух вершин верхнего основания. Получился прямоугольный треугольник с углом 45°. Если в прямоугольном треугольнике один угол равен 45° то второй тоже будет 45°, их чего следует,что этот треугольник равнобедренный, и высота равна отрезку при основании. Две высоты, проведённые к нижнему основанию отсекают в нём посередине часть отрезка равную верхнему основанию. Так как трапеция равнобедренная, то отрезки образующиеся на нижнем основании, расположенные по бокам от отрезка равного верхнему основанию, будут равны между собой и их сумма будет составлять 7-х т.е. мы от нижнего основания вычитаем верхнее. Обозначим каждый такой отрезок как (7-х)÷2. Так как мы выяснили, что в прямоугольном треугольнике высота и этот отрезок равны, тогда каждый тоже будет (7-х)÷2. Составляем уравнение:
(7-х)÷2× (7+х)÷2=10
(49-х^)÷4=10
49-х^=40
-х^=40-49
-х^= -9
х^=9
х=3
(7-х)÷2 - это высота; (7+х)÷2- это полусумма двух оснований; 10- это площадь трапеции. Площадь трапеции равна полусумме оснований умноженная на высоту, и на основе этой формулы мы составили уравнение.
Объяснение: Расстояние между двумя точками — это длина отрезка, что соединяет эти точки.
Задание №2.
ответ: МР = КТ.
Объяснение: Данные отрезки равны, так как прямые а и b - параллельные и отрезки МР и КТ образуют углы в 90°.
Задание №3.
ответ: АВ - гипотенуза треугольника АВН и сторона треугольника АВС; АН - катет треугольника АВН и высота треугольника АВС; АС - гипотенуза треугольника АСН и сторона треугольника АВС.
Задание №4.
ответ: 1) Нет, расстояние от точки А до прямой ВС построено не верно. 2) Расстояние от точки В до АН равно 2 см.
Объяснение: 1) Верно будет провести отрезок от точки А до С, тогда это будет верное расстояние.
Задание №5.
ответ: Расстояние от М до АВ равно 10.
Объяснение: В прямоугольном треугольнике, если угол равен 45°, значит два угла будут по 45°, один естественно 90°.
Получается это прямоугольный равнобедренный треугольник, отсюда следует, что два катета равны. А расстояние от точки М до АВ будет длина стороны МВ.
Задание №6.
ответ: Расстояние от М до ВА равно 6.
Объяснение: Проведём отрезок от от точки В до М, получится прямоугольный треугольник АВМ. Найдём длину гипотенузы АМ, она будет равна диаметру окружности, который равен двум радиусам. d = 2*R; d = 2 * 6; d = 12. Теперь по теореме катет лежащий против угла 30° равен половине гипотенузы, вычисляем ВМ = АМ / 2; ВМ = 12 / 2 = 6.
Задание №7.
ответ: Расстояние между ВС и AD равно 4 см.
Объяснение: Проведём высоту ВН на отрезок AD, так как это и будет расстоянием между ВС и AD. Получается прямоугольный треугольник АВН с ∠А = 30°. Отсюда следует ВН = AB / 2; BH = 8 / 2 = 4 см.
Задание №8.
ответ: Расстояние между красной и синей 3,6 см; между желтой и синей 7,2 см.
Объяснение: Расстояние между красной и синей равно 3 клетки, так как 1 клетка равна 1,2 см, нужно 3 * 1,2 = 3,6 см. Это и будет искомым расстояние. Точно также и с желтой и синей, расстояние между ними равно 6 клеток, отсюда следует 6 * 1,2 = 7,2 см.
P.s. Надеюсь, что я правильно понял 8 задание и 1 клетка равна 1,2 см, иначе прощения
ответ: Верхнее основание 3см
Объяснение: так как углы при основании составляют 45° каждый, то они находятся у нижнего основания и эта это трапеция равнобедренная. Обозначим основание, которое нужно найти -х. Проведём к нижнему основанию высоту с двух вершин верхнего основания. Получился прямоугольный треугольник с углом 45°. Если в прямоугольном треугольнике один угол равен 45° то второй тоже будет 45°, их чего следует,что этот треугольник равнобедренный, и высота равна отрезку при основании. Две высоты, проведённые к нижнему основанию отсекают в нём посередине часть отрезка равную верхнему основанию. Так как трапеция равнобедренная, то отрезки образующиеся на нижнем основании, расположенные по бокам от отрезка равного верхнему основанию, будут равны между собой и их сумма будет составлять 7-х т.е. мы от нижнего основания вычитаем верхнее. Обозначим каждый такой отрезок как (7-х)÷2. Так как мы выяснили, что в прямоугольном треугольнике высота и этот отрезок равны, тогда каждый тоже будет (7-х)÷2. Составляем уравнение:
(7-х)÷2× (7+х)÷2=10
(49-х^)÷4=10
49-х^=40
-х^=40-49
-х^= -9
х^=9
х=3
(7-х)÷2 - это высота; (7+х)÷2- это полусумма двух оснований; 10- это площадь трапеции. Площадь трапеции равна полусумме оснований умноженная на высоту, и на основе этой формулы мы составили уравнение.
Верхнее основание 3.
Мы можем также найти высоту, зная х:
Так как высота равна (7-х)÷2, то
(7-3)÷2=4÷2=2. Высота трапеции 2
Галочки вверху над х^ - читайте как Х в КВАДРАТЕ
Задание №1.
ответ: Провести отрезок от точки М до точки К.
Объяснение: Расстояние между двумя точками — это длина отрезка, что соединяет эти точки.
Задание №2.
ответ: МР = КТ.
Объяснение: Данные отрезки равны, так как прямые а и b - параллельные и отрезки МР и КТ образуют углы в 90°.
Задание №3.
ответ: АВ - гипотенуза треугольника АВН и сторона треугольника АВС; АН - катет треугольника АВН и высота треугольника АВС; АС - гипотенуза треугольника АСН и сторона треугольника АВС.
Задание №4.
ответ: 1) Нет, расстояние от точки А до прямой ВС построено не верно. 2) Расстояние от точки В до АН равно 2 см.
Объяснение: 1) Верно будет провести отрезок от точки А до С, тогда это будет верное расстояние.
Задание №5.
ответ: Расстояние от М до АВ равно 10.
Объяснение: В прямоугольном треугольнике, если угол равен 45°, значит два угла будут по 45°, один естественно 90°.
Получается это прямоугольный равнобедренный треугольник, отсюда следует, что два катета равны. А расстояние от точки М до АВ будет длина стороны МВ.
Задание №6.
ответ: Расстояние от М до ВА равно 6.
Объяснение: Проведём отрезок от от точки В до М, получится прямоугольный треугольник АВМ. Найдём длину гипотенузы АМ, она будет равна диаметру окружности, который равен двум радиусам. d = 2*R; d = 2 * 6; d = 12. Теперь по теореме катет лежащий против угла 30° равен половине гипотенузы, вычисляем ВМ = АМ / 2; ВМ = 12 / 2 = 6.
Задание №7.
ответ: Расстояние между ВС и AD равно 4 см.
Объяснение: Проведём высоту ВН на отрезок AD, так как это и будет расстоянием между ВС и AD. Получается прямоугольный треугольник АВН с ∠А = 30°. Отсюда следует ВН = AB / 2; BH = 8 / 2 = 4 см.
Задание №8.
ответ: Расстояние между красной и синей 3,6 см; между желтой и синей 7,2 см.
Объяснение: Расстояние между красной и синей равно 3 клетки, так как 1 клетка равна 1,2 см, нужно 3 * 1,2 = 3,6 см. Это и будет искомым расстояние. Точно также и с желтой и синей, расстояние между ними равно 6 клеток, отсюда следует 6 * 1,2 = 7,2 см.
P.s. Надеюсь, что я правильно понял 8 задание и 1 клетка равна 1,2 см, иначе прощения