1) а=12см, с=13см,
b= \sqrt{ c^{2}- a^{2} } =5cmb=
c
2
−a
=5cm sin \alpha = \frac{12}{13}sinα=
13
12
2) c=40cm \alpha =30*α=30∗ , следовательно а=1/2с=20см
b= \sqrt{ c^{2} - a^{2} } = \sqrt{ 40^{2}- 20^{2} } =20 \sqrt{3}b=
=
40
−20
=20
3
3)\alpha =45α=45 b=4cm
\alpha =45α=45 следовательно \beta =45β=45 и а=в=4см , c= \sqrt{2 a^{2} } = \sqrt{32} =4 \sqrt{2}c=
2a
32
=4
4)\alpha =60α=60 \beta =30β=30 b=5cm, значит c=2в=10см,
a= \sqrt{ c^{2} - b^{2} } = \sqrt{ 10^{2} - 5^{2} } =5 \sqrt{3} cma=
−b
10
−5
=5
cm
4)c= 10 дм, b= 6 дм. a= \sqrt{ c^{2} - b^{2} } = \sqrt{ 10^{2} - 6^{2} } =8dma=
−6
=8dm
sin \alpha =4/5sinα=4/5
ответ: S б = 18 кв. од .
Объяснение:
Нехай ΔАМВ - бічна грань тіраміди і АМ = L , ∠AMB = 120° ;
MN ⊥AB , MN - апофема . ∠AMN = 1/2 *120° = 60° , тому ∠MAN = 30° .
Звідси MN = 1/2 AM = 1/2 L . Із прямок. ΔAMN AN = √ ( AM² - MN²) =
= √ [ L² - ( L/2 )²] = L√3/2 ; AN = L√3/2 ; AB = 2* AN = L√3 ; AB = L√3 .
S б = 1/2 P ос * MN ; S б = 1/2 * 3 *L√3 * 1/2 L = 3√3 L/4 . Із ΔАМВ
за теоремою синусів AB/sin120° = 2R ; R = AB/2sin120° = L√3/(2√3/2) = L .
За умовою R = 8√3 , тому L = R = 8√3 . Тепер вже обчислимо S б :
S б = 3√3 L/4 = 3√3 * 8√3/4 = 18 ( кв. од .) .
1) а=12см, с=13см,
b= \sqrt{ c^{2}- a^{2} } =5cmb=
c
2
−a
2
=5cm sin \alpha = \frac{12}{13}sinα=
13
12
2) c=40cm \alpha =30*α=30∗ , следовательно а=1/2с=20см
b= \sqrt{ c^{2} - a^{2} } = \sqrt{ 40^{2}- 20^{2} } =20 \sqrt{3}b=
c
2
−a
2
=
40
2
−20
2
=20
3
3)\alpha =45α=45 b=4cm
\alpha =45α=45 следовательно \beta =45β=45 и а=в=4см , c= \sqrt{2 a^{2} } = \sqrt{32} =4 \sqrt{2}c=
2a
2
=
32
=4
2
4)\alpha =60α=60 \beta =30β=30 b=5cm, значит c=2в=10см,
a= \sqrt{ c^{2} - b^{2} } = \sqrt{ 10^{2} - 5^{2} } =5 \sqrt{3} cma=
c
2
−b
2
=
10
2
−5
2
=5
3
cm
4)c= 10 дм, b= 6 дм. a= \sqrt{ c^{2} - b^{2} } = \sqrt{ 10^{2} - 6^{2} } =8dma=
c
2
−b
2
=
10
2
−6
2
=8dm
sin \alpha =4/5sinα=4/5
ответ: S б = 18 кв. од .
Объяснение:
Нехай ΔАМВ - бічна грань тіраміди і АМ = L , ∠AMB = 120° ;
MN ⊥AB , MN - апофема . ∠AMN = 1/2 *120° = 60° , тому ∠MAN = 30° .
Звідси MN = 1/2 AM = 1/2 L . Із прямок. ΔAMN AN = √ ( AM² - MN²) =
= √ [ L² - ( L/2 )²] = L√3/2 ; AN = L√3/2 ; AB = 2* AN = L√3 ; AB = L√3 .
S б = 1/2 P ос * MN ; S б = 1/2 * 3 *L√3 * 1/2 L = 3√3 L/4 . Із ΔАМВ
за теоремою синусів AB/sin120° = 2R ; R = AB/2sin120° = L√3/(2√3/2) = L .
За умовою R = 8√3 , тому L = R = 8√3 . Тепер вже обчислимо S б :
S б = 3√3 L/4 = 3√3 * 8√3/4 = 18 ( кв. од .) .