Сумма противоположенных углов вписанного в окружность четырехугольника равна 180 градусов, значит сумма углов B и D = 180. Найдем сначала угол B по теореме косинусов.
угол B = arccos((AB^2+BC^2-AC^2) / (2*AB*BC)) = arccos (225+400-625) / 600) = arccos 0 = 90 градусов(^2 - это в степени 2, т.е. в квадрате), следовательно угол D равен 180 - 90 = 90. Приходим к выводу, что треугольник ACD - прямоугольный треугольник и дальше по теореме пифагора CD=корень из (АС^2-AD^2)=корень из (625-49) = +-24 . ответ: CD = 24.
Сумма противоположенных углов вписанного в окружность четырехугольника равна 180 градусов, значит сумма углов B и D = 180. Найдем сначала угол B по теореме косинусов.
угол B = arccos((AB^2+BC^2-AC^2) / (2*AB*BC)) = arccos (225+400-625) / 600) = arccos 0 = 90 градусов(^2 - это в степени 2, т.е. в квадрате), следовательно угол D равен 180 - 90 = 90. Приходим к выводу, что треугольник ACD - прямоугольный треугольник и дальше по теореме пифагора CD=корень из (АС^2-AD^2)=корень из (625-49) = +-24 . ответ: CD = 24.
Треугольник АВС, АВ=ВС, АС=12, высота=медиане = ВН, АН=СН = 12/2=6
АВ=АС=а,
Периметр = а+а+12=2а+12, полупериметр=(2а+12)/2 = а+6
радиус= площадь/полупериметр
площадь = радиус х полупериметр = 3 х (а+6) = 3а+18
ВН = корень(АВ в квадрате - АН в квадрате) = корень(а в квадрате - 36)
площадь = 1/2АС х ВН = 6 х корень(а в квадрате - 36)
приравниваем площади
3а+18 = 6 х корень(а в квадрате - 36) - возводим две части в квадрат
27а в квадрате - 108а -1620=0
а = (108+- корень(11664+ 4 х 27 х 1620) ) / 2 х 27
а= (108+- 432) / 54
а = 540/54 =10 = АВ=АС
высота ВН = корень(100-36) = 8
площадь = 1/2 х 12 х 8 = 48