Точка А1 симетрична точці А (-3;2;1) відносно початку координат, а точка А2 симетрична точці А1 відносно площини хОу. Знайдіть координати середини відрізка АА2. Благаю вас дуже до іть будь-ласка
Объяснение: Рассмотрим основание NPK данного тетраэдра. Сторона АВ получившегося прямоугольника параллельна стороне PN треугольника NPK. Треугольники КВА и КNP подобны по двум углам: угол К общий, углы КАВ и КРN равны как соответственные при пересечении параллельных АВ и PN секущей КР.
Из данного в условии отношения отрезков ребра РК примем РА=а, АК=2а, ⇒ РК=РА+АК=а+2а=3а. Коэффициент подобия РК:АК=3:2 . ⇒ PN:АВ=3:2, откуда АВ=2/3 PN=9•2/3=6 дм.
Противоположные стороны прямоугольника равны. Р(АВСD)=2•(АВ+АD)=2•(6+4)=20 (см)
Поскольку у параллелограмма АВСД противоположные стороны параллельны и равны, противоположные углы равны, значит АД=ВС и АД║ВС АВ=СД и АВ║СД ∠А=∠С ∠В=∠Д
Рассмотрим треугольники АМД и ВСК. АМ=СК - это дано по условию задания. АД=ВС - это мы выяснили выше ∠А=∠С - это мы выяснили выше А эти равности дают нам право утверждать, что треугольник АМД=треугольнику ВСК. А это означает, что МД=ВК. Также из равности треугольников можно утверждать, что ∠АМД=∠СКВ. ∠МДА=∠КВС.
Сумма мер двух смежных углов равна 180°, значит ∠ВМД+∠АМД=180°, отсюда ∠ВМД=180° - ∠АМД ∠ДКБ+∠СКВ=180°, отсюда ∠ДКБ=180° - ∠СКВ
Поскольку ∠АМД=∠СКВ, а значит ∠ВМД=∠ДКБ
Поскольку ∠МДА=∠КВС и ∠АВС=∠АДС, тогда ∠АВК=∠СДМ, так как ∠АВС=∠АВК+∠КВС, отсюда ∠АВК=∠АВС-∠КВС ∠АДС=∠МДА+∠СДМ, отсюда ∠СДМ=∠АДС-∠МДА
АВ=АМ+ВМ, отсюда ВМ=АВ-АМ СД=СК+КД, отсюда КД=СД-СК Поскольку АВ=СД, а АМ=СК, значит ВМ=КД. Поскольку АВ║СД, то и ВМ║КД.
Получаеться, мы выяснили, что МД=ВК ∠ВМД=∠ДКБ ∠АВК=∠СДМ ВМ=КД ВМ║КД.
Из всего этого мы можем сделать вывод, что МВКД - это параллелограмм, поскольку у него противоположные стороны и углы равны.
ответ: 20 см
Объяснение: Рассмотрим основание NPK данного тетраэдра. Сторона АВ получившегося прямоугольника параллельна стороне PN треугольника NPK. Треугольники КВА и КNP подобны по двум углам: угол К общий, углы КАВ и КРN равны как соответственные при пересечении параллельных АВ и PN секущей КР.
Из данного в условии отношения отрезков ребра РК примем РА=а, АК=2а, ⇒ РК=РА+АК=а+2а=3а. Коэффициент подобия РК:АК=3:2 . ⇒ PN:АВ=3:2, откуда АВ=2/3 PN=9•2/3=6 дм.
Противоположные стороны прямоугольника равны. Р(АВСD)=2•(АВ+АD)=2•(6+4)=20 (см)
АД=ВС и АД║ВС
АВ=СД и АВ║СД
∠А=∠С
∠В=∠Д
Рассмотрим треугольники АМД и ВСК.
АМ=СК - это дано по условию задания.
АД=ВС - это мы выяснили выше
∠А=∠С - это мы выяснили выше
А эти равности дают нам право утверждать, что треугольник АМД=треугольнику ВСК.
А это означает, что МД=ВК.
Также из равности треугольников можно утверждать, что
∠АМД=∠СКВ.
∠МДА=∠КВС.
Сумма мер двух смежных углов равна 180°, значит
∠ВМД+∠АМД=180°, отсюда ∠ВМД=180° - ∠АМД
∠ДКБ+∠СКВ=180°, отсюда ∠ДКБ=180° - ∠СКВ
Поскольку ∠АМД=∠СКВ, а значит
∠ВМД=∠ДКБ
Поскольку ∠МДА=∠КВС и ∠АВС=∠АДС, тогда
∠АВК=∠СДМ, так как
∠АВС=∠АВК+∠КВС, отсюда ∠АВК=∠АВС-∠КВС
∠АДС=∠МДА+∠СДМ, отсюда ∠СДМ=∠АДС-∠МДА
АВ=АМ+ВМ, отсюда ВМ=АВ-АМ
СД=СК+КД, отсюда КД=СД-СК
Поскольку АВ=СД, а АМ=СК, значит
ВМ=КД.
Поскольку АВ║СД, то и ВМ║КД.
Получаеться, мы выяснили, что
МД=ВК
∠ВМД=∠ДКБ
∠АВК=∠СДМ
ВМ=КД
ВМ║КД.
Из всего этого мы можем сделать вывод, что МВКД - это параллелограмм, поскольку у него противоположные стороны и углы равны.