Точка а расположена на расстоянии 3√3 см от плоскости α. наклонные ав и вс образуют с плоскостью углы 60° и 45° соответственно, а угол между наклонными равен 90°. найти расстояние между основаниями наклонных.
Пусть дан параллелограмм авсd и его диагональ ас. полный угол а равен сумме меньших углов, из которых он состоит, т.е. ваd = вас + dас = 40 + 20 = 60 градусов. теперь рассмотрим сам параллелограмм. сторона ав является секущей по отношению к пареллельным прям вс и аd (противолежащие стороны параллелограмма параллельны друг другу). по теореме о углах, образованный при пересечении параллельных прямых секущей, сумма односторонних углов, коими являются углы авс и ваd, равна 180 градусам, т.е. авс + ваd = 180. авс = 180 - ваd = 180 - 60 = 120 градусов. больший угол параллелограмма авс равен 180 градусам.
1. 4) такого тр-ка не существует, потому-что 5+9<15, а с таким отношением тр-ник построить нельзя. 2. Пусть боковые стороны будут a=х и b=х-3. Так как высота делит тр-ник на два прямоугольных тр-ка и она для них общая, то по т. Пифагора можно записать ур-ние: х²-10²=(х-3)²-5², х²-100=х²-6х+9-25, х=14, а=14 см, b=14-3=11 см, c=5+10=15 cм. Р=14+11+15=40 см. ответ: б) 40 см. 3. АВСД - ромб, ∠А=60°, АВ=АД, значит АВД - правильный тр-ник. В нём АО - высота. АО=АВ√3/2, АС=2АО=АВ√3 ⇒ АВ=АС/√3. АВ=4√3/√3=4 см. Периметр ромба: Р=4АВ=16 см. ответ: а) 16 см.
2. Пусть боковые стороны будут a=х и b=х-3.
Так как высота делит тр-ник на два прямоугольных тр-ка и она для них общая, то по т. Пифагора можно записать ур-ние:
х²-10²=(х-3)²-5²,
х²-100=х²-6х+9-25,
х=14,
а=14 см, b=14-3=11 см, c=5+10=15 cм.
Р=14+11+15=40 см.
ответ: б) 40 см.
3. АВСД - ромб, ∠А=60°, АВ=АД, значит АВД - правильный тр-ник. В нём АО - высота. АО=АВ√3/2, АС=2АО=АВ√3 ⇒ АВ=АС/√3.
АВ=4√3/√3=4 см.
Периметр ромба: Р=4АВ=16 см.
ответ: а) 16 см.