Пусть ad = a1d1 — равные биссектрисы, ∠a = ∠a1, ac = a1c1 — равные стороны. в δаdс = δa1d1c1: ∠dac = ∠d1a1c1 (т.к. ∠dac половина угла ∠bac ∠dac = ∠bac : 2 = ∠b1a1c1 : 2 = ∠d1a1c1). ad = a1d1, ас = а1с1. (по условию: ad = a1d1 — равные биссектрисы, aс = a1c1 — равные прилежащие стороны). таким образом, δadc = δа1d1c1 по 1-му признаку равенства треугольников, откуда ∠с = ∠с1 как лежащие против равных сторон в равных треугольниках) в δabcи δа1в1с1: ас = а1с1, ∠а = ∠а1 (по условию) ∠с = ∠с1. таким образом, δabc = δа1в1с1 по 1-му признаку равенства треугольников, что и требовалось доказать.
4
145+35=180 градусов как внутренние односторонние, значит FP||EK
X=<50=50 градусов как накрест лежащие
5
Угол вертикальный с < 51 градус равен
51 градус
129+51=180 градусов как односторонние, значит ВС ||АD
<CBE=<AEB=52 градуса как накрест лежащие
<АВС=2×<СВЕ=2×52=104 градуса
Х=180-<АВС=180-104=76 градусов как односторонние
6
<112+<68=180 градусов, значит NK||MP
<78=<КРМ=78 градусов как накрест лежащие
<ТРМ=<КРМ:2=78:2=39 градусов
Х=<ТРМ=39 градусов как накрест лежащие