Тик DEF правильный. 10.10. На продолжении сторон правильного треугольника АВС отло- жены равные отрезки AA, BB и CC, (рис. 10.14). Докажите, что треугольник A,B,C, правильный. C B В A1 B1 Рис
Допустим, имеем параллелограмм ABCD, в котором AC и BD - диагонали. Доказательство: 1. Необходимо опустить перпендикуляры BK и CF на прямую, которая содержит сторону AD. 2. Рассмотрим ΔBDK: По теореме Пифагора: BD²=KD²+BK² 3. Рассмотрим ΔACF: По теореме Пифагора: AC²=AF²+CF² 4. Складываем два выражения в столбик: BD²=KD²+BK² + AC²=AF²+CF² = AC²+BD²=KD²+BK²+AF²+CF² По свойству высот в параллелограмме, BK=CF ⇒ AC²+BD²=2BK²+KD²+AF² 5. Рассмотрим ΔABK: По теореме Пифагора: BK²=AB²-AK² 6. Так как KD=AD-AK, AF=AD+FD ⇒ AC²+BD²=2(AB²-AK²)+(AD-AK)²+(AD+FD)² 7. BK=CF, AB=CD ⇒ ΔABK=ΔDCF - по свойству катета и гипотенузы ⇒ AK=DF ⇒ AC²+BD²=2(AB²-AK²)+(AD-AK)²+(AD+AK)² AC²+BD²=2AB²-2AK²+AD²-2AD*AK+AK²+AD²+2AD*AK+AK² AC²+BD²=2AB²+2AD² AC²+BD²=2(AB²+AD²) Что и требовалось доказать.
Все ребра и их проекции на основание, очевидно равны.
В самом деле : высота пирамиды равна ребру, умноженному на синус угла наклона ребра к основанию, а все углы наклона равны между собой. Но тогда и проекции ребер на плоскость основания равны между собой и основание высоты равноудалено от вершин треугольнка.
Значит проекции ребер на основание равны радиусу описанной окружности:
Есть формула : R=abc/4S, где S -площадь треугольника, а abc - произведение сторон.
Значит :
R=7*8*9/(4*12*sqrt(5))=7*3/2sqrt(5)
Высота пирамиды :R*tg(60)= 21*sqrt(3)/2sqrt(5)
Объем - треть произведения высоты на площадь основания, стало быть:
Объём пирамиды : (21*sqrt(3)/2sqrt(5))*12*sqrt(5)/3=7*6*sqrt(3)=42*sqrt(3)
Доказательство:
1. Необходимо опустить перпендикуляры BK и CF на прямую, которая содержит сторону AD.
2. Рассмотрим ΔBDK:
По теореме Пифагора:
BD²=KD²+BK²
3. Рассмотрим ΔACF:
По теореме Пифагора:
AC²=AF²+CF²
4. Складываем два выражения в столбик:
BD²=KD²+BK²
+
AC²=AF²+CF²
=
AC²+BD²=KD²+BK²+AF²+CF²
По свойству высот в параллелограмме, BK=CF ⇒ AC²+BD²=2BK²+KD²+AF²
5. Рассмотрим ΔABK:
По теореме Пифагора:
BK²=AB²-AK²
6. Так как KD=AD-AK, AF=AD+FD ⇒ AC²+BD²=2(AB²-AK²)+(AD-AK)²+(AD+FD)²
7. BK=CF, AB=CD ⇒ ΔABK=ΔDCF - по свойству катета и гипотенузы ⇒ AK=DF ⇒
AC²+BD²=2(AB²-AK²)+(AD-AK)²+(AD+AK)²
AC²+BD²=2AB²-2AK²+AD²-2AD*AK+AK²+AD²+2AD*AK+AK²
AC²+BD²=2AB²+2AD²
AC²+BD²=2(AB²+AD²)
Что и требовалось доказать.
42*sqrt(3)
Объяснение:
Площадь треугольника в основании по формуле Герона:
Полупериметр р=(7+8+9)/2=12
S=sqrt(12*(12-7)*(12-8)*(12-9))=sqrt(12*5*4*3)=12*sqrt(5),
Здесь sqrt(5)- корень квадратный из 5.
Все ребра и их проекции на основание, очевидно равны.
В самом деле : высота пирамиды равна ребру, умноженному на синус угла наклона ребра к основанию, а все углы наклона равны между собой. Но тогда и проекции ребер на плоскость основания равны между собой и основание высоты равноудалено от вершин треугольнка.
Значит проекции ребер на основание равны радиусу описанной окружности:
Есть формула : R=abc/4S, где S -площадь треугольника, а abc - произведение сторон.
Значит :
R=7*8*9/(4*12*sqrt(5))=7*3/2sqrt(5)
Высота пирамиды :R*tg(60)= 21*sqrt(3)/2sqrt(5)
Объем - треть произведения высоты на площадь основания, стало быть:
Объём пирамиды : (21*sqrt(3)/2sqrt(5))*12*sqrt(5)/3=7*6*sqrt(3)=42*sqrt(3)