Так как 2 внешних угла треугольника ABC друг другу равны(<CBM == <ACF), то вторая пара соседних вертикальных внешних углов тоже равна (<ABC == <ACB (рис.1)).
<ABC == <ACB => AC == AB.
P = 34 =>
P = 2x+12
P = 11+11+12 => AC == AB = 11.
Вывод: AB = 11.
2.
<ABC = 50° => <CBD = 180-50 = 130°
BC == BD => <BCD == <BDC (рис.2)
Так как углы равны, то каждый из них равен:
<BCD = (180-130)/2 = 25° => <BCD == <BDC = 25°
<ACB = 60°; <BCD = 25° => <ACD = 25+60 = 85°.
Вывод: <ACD = 85°.
5.
Чтобы сравнить стороны треугольника, надо сравнить углы, противоположные этим сторонам: <B = 70°; <C = 60° => <A = 180-(70+60) = 50°.
Самый маленький угол — <A. Ему противолежащая сторона — BC, которая самая маленькая, тоесть: BC < AB < AC (рис. 3).
Средний угол — <C = 60° ему противолежащая сторона — AB, тоесть: AB > BC < AC
Самый большой угол — <B = 70°, ему противолежащая сторона — AC, тоесть: AC > AB > BC.
1.
Так как 2 внешних угла треугольника ABC друг другу равны(<CBM == <ACF), то вторая пара соседних вертикальных внешних углов тоже равна (<ABC == <ACB (рис.1)).
<ABC == <ACB => AC == AB.
P = 34 =>
P = 2x+12
P = 11+11+12 => AC == AB = 11.
Вывод: AB = 11.
2.
<ABC = 50° => <CBD = 180-50 = 130°
BC == BD => <BCD == <BDC (рис.2)
Так как углы равны, то каждый из них равен:
<BCD = (180-130)/2 = 25° => <BCD == <BDC = 25°
<ACB = 60°; <BCD = 25° => <ACD = 25+60 = 85°.
Вывод: <ACD = 85°.
5.
Чтобы сравнить стороны треугольника, надо сравнить углы, противоположные этим сторонам: <B = 70°; <C = 60° => <A = 180-(70+60) = 50°.
Самый маленький угол — <A. Ему противолежащая сторона — BC, которая самая маленькая, тоесть: BC < AB < AC (рис. 3).
Средний угол — <C = 60° ему противолежащая сторона — AB, тоесть: AB > BC < AC
Самый большой угол — <B = 70°, ему противолежащая сторона — AC, тоесть: AC > AB > BC.
6.
<B = 27° => <A = 90-27 = 63°
CK — биссектриса => <KCB == <ACK = 90/2 = 45°
<ADC = 90°; <A = 63° => <ACD = 90-63 = 27°
<ACD = 27° => <DCK = <ACK - <ACD = 45-27 = 18°
Вывод: <DCK = 18°.
Дано:
АВС - треугольник
АМ = СМ
уг. АВС = 60°
уг. ВМА = 90°
Найти
уг. МВС - ?
уг. ВСА - ?
Решение
угол ВМА = 90° => уг. ВМС = 90°
т.е. ВМ | АС, а значит,
ВМ - высота, проведенная из вершины В на АС.
Также АМ = МС, а значит
ВМ - медиана, проведенная из вершины В на АС.
Если медиана треугольника является его высотой, то этот треугольник - равнобедренный.
ВМ - высота и медиана ∆АВС, =>
=> ∆АВС - равнобедренный, основание АС =>
=> ВМ - также является биссектрисой ∆АВС, т.е.
уг. АВМ = уг. СВМ
Так, как ∆АВС - равнобедренный, с основанием АС, то углы при основании - равны друг другу
уг. ВАС = уг. АСВ
и равны
угол ВАС = угол ВСА = 1/2 • (180 - угол АВС)
угол ВАС = угол ВСА = 1/2 • (180 - 60) = 60°
а значит ∆АВС - равносторонний.
угол MBC = 30°
угол ВCA = 60°