Терміново!! ів. Коло, вписане в трикутник DFE? Дотикається сторони DF, а точці А такій, що AD-AF=14см. Вершина Е віддалена від точки дотикувписаного кола зі стороною FE на 4 см. Знайдіть сторони трикутника, якщо периметр дорівнює 60см.
Втетрайдере давс точка р середина ад, точка f принадлежит ребру дв, причем f принадлежит дв, дf: fв=1: 3. постройти сечение тетрайдера с плоскостью проходящую через рf и || ас. найдите s сечения, если все ребра равны а. проведем в плоскости adc прямую через точку p параллельную прямой ac, полученная прямая пересекает dc в точке м. тогда pmf - искомое сечение. найдем его площадь. 1) так как df: fb = 1: 3 и df + fb = db = a, то df = 1/4 * a. pd = 1/2 * ad = 1/2 * a. так как в треугольнике adb ad = db = ab = a, значит он равносторонний и pdf = 60. тогда по теореме косинусов: pf^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 pf^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 2) в треугольнике dac pm || ac и p - середина ad => pm - средняя линия, тогда pm = 1/2 * ac = 1/2 * a и dm = 1/2 * dc = 1/2 * a 3) dm = 1/2 * a, df = 1/4 * a так как в треугольнике cdb cd = db = cb = a, значит он равносторонний и fdm = 60. тогда по теореме косинусов: fm^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 fm^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 значит искомый треугольник pmf равнобедренный fm = pf = 3^(1/2)/4 * a, dm = 1/2 * a fh2 - высота треугольника mfp (она же медиана) отсюда mh2 = 1/2 * mp = 1/2 * 1/2 * a = 1/4 * a из прямоугольного треугольника fmh2: (fm)^2 = (fh2)^2 + (mh2)^2 (fh2)^2 = (fm)^2 - (mh2)^2 (fh2)^2 = (3^(1/2)/4 * a)^2 - (1/4 * a)^2 = = 3/16 * a^2 - 1/16 * a^2 = 1/8 * a^2 => fh2 = 2^(1/2)/4 * a s mfp = 1/2 * mp * fh2 s mfp = 1/2 * 1/2 * a * 2^(1/2)/4 * a = 2^(1/2)/16 * a^2 вот так наверное.
В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .