Билет 6: Луч — это множество точек прямой, которые расположены по одну сторону от данной точки. Угол - геомтрическая фигура, которая состоит из точки и двух лучей, исходящих из этой точки. Есть 4 вида угла: развёрнутый - обе стороны лежат на 1 прямой. Прямой - если угол = 90°, тупой = угол > 90*, острый = угол < 90*. В равнобедренном Δ, углы при основании =. Дано - ΔАВС - рвб АС - основание Док-во Прочертим биссектрису ВТ. ΔАВТ = ΔВТС 1) 1 общая сторона (ВТ) ⇒ΔАВТ=ΔВТС 2) АВ = ВС (по условию) (по 2 сторонам и улу междуними) 3) Угол В1 = ∠В2 ( ВТ - биссектриса) ЧТД Билет 7: Прямая называется секущей по отношению к прямым α и β если она пересекает их в 2-х точках. Углы: Накрест лежащие углы; Односторонние углы; Соответственные углы. Дальше надо строить. Билет 8: Определение равных фигур - равенство треугольников? Если да, напиши, я тебе вечером напишу также как и построение по трём сторонам Билет 10: Биссектриса - отрезок, выходящий из вершины угла и делящий этот угол пополам. В рвбΔ биссектриса проведённая к основанию является также медианой и высотой Сумма двух острых углов прямоугольного Δ = 90*. Док - во Сума углов Δ = 180*, а прямой угол = 90* ⇒ 180*-90* = 90* - сумма остальных двух углов. ЧТД
Рассмотрим треугольник АСД и наклонную ВК. К∈АС. По теореме Менелая (АК/КС)·(СО/ОД)·(ВД/АВ)=1.
Высота равнобедренного треугольника, проведённая к основанию, является медианой, значит АД=ВД ⇒ ВД:АВ=1:2.
(АК/КС)·(1/1)·(1/2)=1, АК/КС=2:1.
Треугольники АОД и ВОД равны по двум сторонам и прямому углу между ними, значит ∠ОАД=∠ОВД. Треугольники ALB и ВКА равны по общей стороне АВ и прилежащим к ней углам, значит АК=BL, значит СК=CL, значит треугольник CKL равнобедренный, значит треугольники АВС и CKL подобны.
Коэффициент подобия тр-ков АВС и CKL: k=AC/КС. АК:КС=2:1 ⇒ АС:КС=3:1=k. Коэффициент подобия площадей тр-ков АВС и CKL k²=3²=9.
Луч — это множество точек прямой, которые расположены по одну сторону от данной точки.
Угол - геомтрическая фигура, которая состоит из точки и двух лучей, исходящих из этой точки. Есть 4 вида угла: развёрнутый - обе стороны лежат на 1 прямой. Прямой - если угол = 90°, тупой = угол > 90*, острый = угол < 90*.
В равнобедренном Δ, углы при основании =.
Дано - ΔАВС - рвб
АС - основание
Док-во
Прочертим биссектрису ВТ.
ΔАВТ = ΔВТС
1) 1 общая сторона (ВТ) ⇒ΔАВТ=ΔВТС
2) АВ = ВС (по условию) (по 2 сторонам и улу междуними)
3) Угол В1 = ∠В2 ( ВТ - биссектриса) ЧТД
Билет 7:
Прямая называется секущей по отношению к прямым α и β если она пересекает их в 2-х точках.
Углы: Накрест лежащие углы; Односторонние углы; Соответственные углы.
Дальше надо строить.
Билет 8: Определение равных фигур - равенство треугольников? Если да, напиши, я тебе вечером напишу также как и построение по трём сторонам
Билет 10: Биссектриса - отрезок, выходящий из вершины угла и делящий этот угол пополам. В рвбΔ биссектриса проведённая к основанию является также медианой и высотой
Сумма двух острых углов прямоугольного Δ = 90*.
Док - во
Сума углов Δ = 180*, а прямой угол = 90* ⇒ 180*-90* = 90* - сумма остальных двух углов.
ЧТД
S(CKL)=?
Рассмотрим треугольник АСД и наклонную ВК. К∈АС.
По теореме Менелая (АК/КС)·(СО/ОД)·(ВД/АВ)=1.
Высота равнобедренного треугольника, проведённая к основанию, является медианой, значит АД=ВД ⇒ ВД:АВ=1:2.
(АК/КС)·(1/1)·(1/2)=1,
АК/КС=2:1.
Треугольники АОД и ВОД равны по двум сторонам и прямому углу между ними, значит ∠ОАД=∠ОВД.
Треугольники ALB и ВКА равны по общей стороне АВ и прилежащим к ней углам, значит АК=BL, значит СК=CL, значит треугольник CKL равнобедренный, значит треугольники АВС и CKL подобны.
Коэффициент подобия тр-ков АВС и CKL: k=AC/КС.
АК:КС=2:1 ⇒ АС:КС=3:1=k.
Коэффициент подобия площадей тр-ков АВС и CKL k²=3²=9.
S(ABC)=АВ·СД/2=3·4/2=6,
S(CKL)=S(ABC)/k²=6/9=2/3 (ед²) - это ответ.