Тема: Теорема о трех перпендикулярах Тема: Угол между прямой и плоскостью Решить задачи. Оформить решение (Дано, Найти, Решение, ответ). Решение должно быть подробным.
Найдем площадь основания параллелепипеда S=аbsin60°=6·6·√3/2=18√3.
Рассмотрим треугольник, сторонами которого являются: меньшая диагональ нижнего основания параллелепипеда, меньшая диагональ параллелепипеда и высота параллелепипеда.
Этот треугольник прямоугольный с острыми углами по 45°. Значит его катеты равны.
Меньшая диагональ основания (ромба) делит ромб на два равносторонних треугольника, значит меньшая диагональ равна 6 см и высота также равна 6 см.
ответ:Номер 1
Диагонали прямоугольника в точке пересечения делятся пополам
Треугольник АОВ равнобедренный
<АВО=<ВАО=42 градуса
<ВОА=180-42•2=180-84=96 градусов
<АОD=(360-96•2):2=168:2=84 градуса
Номер 2
<1=<2=90 градусов
<3=35 градусов
<4=180-35=145 градусов
Номер 3
Одна сторона 2Х
Вторая 3Х
2Х•2+3Х•2=30
10Х=30
Х=30:10
Х=3
Одна сторона 3•2=6 см
Вторая 3•3=9 см
Номер 4
Углы при большом основании
<1=<2=106:2=53 градуса
Углы при меньшем основании
(360-53•2):2=127 градусов
<3=<4=127 градусов
Объяснение:
Найдем площадь основания параллелепипеда S=аbsin60°=6·6·√3/2=18√3.
Рассмотрим треугольник, сторонами которого являются: меньшая диагональ нижнего основания параллелепипеда, меньшая диагональ параллелепипеда и высота параллелепипеда.
Этот треугольник прямоугольный с острыми углами по 45°. Значит его катеты равны.
Меньшая диагональ основания (ромба) делит ромб на два равносторонних треугольника, значит меньшая диагональ равна 6 см и высота также равна 6 см.
V=Sh=6·18√3=108√3 cм³.
ответ: 108√3 см³.
Я новичок так что хз правильно или нееет..