Объяснение:
1. На любой прямой можно взять сколько угодно точек, принадлежащих этой прямой и не принадлежащих этой прямой.
Другая прямая, хоть параллельная, хоть перпендикулярная, ни при чём.
Смотрите рис. 1.
Точки A, B, C принадлежат прямой а.
Точки D, E, F не принадлежат прямой а.
Точка Е принадлежит параллельной прямой b.
Точка D принадлежит перпендикулярной прямой c.
Точка А принадлежит и прямой а и прямой с.
2. Два угла можно построить на одном луче, с двух разных сторон.
Смотрите рисунок 2.
Угол образец сверху. Снизу два угла, равных образцу, у луча AB.
∠1 = 40°
∠2 = 60°
∠3 = 80°.
Сумма углов треугольника = 180° (по теореме о сумме углов треугольника).
Примем одну часть за x.
Из этого следует, что: ∠1 = 2х,
∠2 = 3х,
∠3 = 4х .
Составим уравнение.
2х + 3х + 4х = 180
9х = 180
х = 180 : 9
х = 20° - составляет одна часть.
Так как по условию первый угол составляет 2 части, второй угол - 3 части, третий - 4 части: ∠1 = 2 * 20° = 40°
∠2 = 3 * 20° = 60°
∠3 = 4 * 20° = 80°
Объяснение:
1. На любой прямой можно взять сколько угодно точек, принадлежащих этой прямой и не принадлежащих этой прямой.
Другая прямая, хоть параллельная, хоть перпендикулярная, ни при чём.
Смотрите рис. 1.
Точки A, B, C принадлежат прямой а.
Точки D, E, F не принадлежат прямой а.
Точка Е принадлежит параллельной прямой b.
Точка D принадлежит перпендикулярной прямой c.
Точка А принадлежит и прямой а и прямой с.
2. Два угла можно построить на одном луче, с двух разных сторон.
Смотрите рисунок 2.
Угол образец сверху. Снизу два угла, равных образцу, у луча AB.
∠1 = 40°
∠2 = 60°
∠3 = 80°.
Объяснение:Сумма углов треугольника = 180° (по теореме о сумме углов треугольника).
Примем одну часть за x.
Из этого следует, что: ∠1 = 2х,
∠2 = 3х,
∠3 = 4х .
Составим уравнение.
2х + 3х + 4х = 180
9х = 180
х = 180 : 9
х = 20° - составляет одна часть.
Так как по условию первый угол составляет 2 части, второй угол - 3 части, третий - 4 части: ∠1 = 2 * 20° = 40°
∠2 = 3 * 20° = 60°
∠3 = 4 * 20° = 80°