а) сначала мысленно разделим фигуру на две части.
получаем две фигуры: квадрат (S₁) и прямоугольник (S₂), общая площадь - S
Дано:
а₁ = 8 м
а₂ = 5 м
b₁ = 8 м
b₂ = 3 м
Найти: S.
1) S = S₁ + S₂
2) S₁ = a₁b₁
3) S₁ = 8*8 = 64 (м²)
4) S₂ = a₂b₂
5) S₂ = 5*3 = 15 (м²)
6) S = 64+15 = 79 (м²) - площадь всей фигуры
ответ: S = 79 м²
б) сначала найдем площадь большей фигуры, затем меньшей и вычтем.
а₁ = 40 см
а₂ = 14 см
b₁ = 56 см
b₂ = 20 см
Найти: S
3) S₁ = 40*56 = 2240 (см²)
5) S₂ = 14*20 = 280 (см²)
6) S = 2240+280 = 2520 (см²) - площадь всей фигуры
ответ: S = 2520 см²
Трапеция равнобедренная AB=CD.
AC=6√3
∠A=60°
В равнобедренной трапеции прилежащие к боковой стороне углы дают в сумме 180°.
∠B=180°-60°=120°
Диагональ по условию делит острый угол ∠А пополам, значит ∠BAC=30°.
Рассмотрим ΔABC:
Сумма внутренних углов треугольника 180°.
∠ABC+∠BAC+∠ACB=180°
120°+30°+∠ACB=180°
∠ACB=30°
Так как ∠ACB=∠BAC, ΔACB – равнобедренный. Значит боковые стороны и меньшее основание равны, AB=CD=BC.
По теореме синусов, стороны пропорциональны синусам противолежащего угла.
AB=6
Следовательно, AB=BC=CD=6.
∠B=∠C, потому что это равнобедренная трапеция.
∠ACD=∠C-∠ACB
∠ACD=120°-30°=90°
Значит ΔACD – прямоугольный, где угол ∠ACD – прямой.
По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов.
AD²=AC²+CD²
P=AB+BC+CD+AD
P=6+6+6+12=30
а) сначала мысленно разделим фигуру на две части.
получаем две фигуры: квадрат (S₁) и прямоугольник (S₂), общая площадь - S
Дано:
а₁ = 8 м
а₂ = 5 м
b₁ = 8 м
b₂ = 3 м
Найти: S.
1) S = S₁ + S₂
2) S₁ = a₁b₁
3) S₁ = 8*8 = 64 (м²)
4) S₂ = a₂b₂
5) S₂ = 5*3 = 15 (м²)
6) S = 64+15 = 79 (м²) - площадь всей фигуры
ответ: S = 79 м²
б) сначала найдем площадь большей фигуры, затем меньшей и вычтем.
Дано:
а₁ = 40 см
а₂ = 14 см
b₁ = 56 см
b₂ = 20 см
Найти: S
1) S = S₁ + S₂
2) S₁ = a₁b₁
3) S₁ = 40*56 = 2240 (см²)
4) S₂ = a₂b₂
5) S₂ = 14*20 = 280 (см²)
6) S = 2240+280 = 2520 (см²) - площадь всей фигуры
ответ: S = 2520 см²
Трапеция равнобедренная AB=CD.
AC=6√3
∠A=60°
В равнобедренной трапеции прилежащие к боковой стороне углы дают в сумме 180°.
∠B=180°-60°=120°
Диагональ по условию делит острый угол ∠А пополам, значит ∠BAC=30°.
Рассмотрим ΔABC:
Сумма внутренних углов треугольника 180°.
∠ABC+∠BAC+∠ACB=180°
120°+30°+∠ACB=180°
∠ACB=30°
Так как ∠ACB=∠BAC, ΔACB – равнобедренный. Значит боковые стороны и меньшее основание равны, AB=CD=BC.
По теореме синусов, стороны пропорциональны синусам противолежащего угла.
AB=6
Следовательно, AB=BC=CD=6.
∠B=∠C, потому что это равнобедренная трапеция.
∠ACD=∠C-∠ACB
∠ACD=120°-30°=90°
Значит ΔACD – прямоугольный, где угол ∠ACD – прямой.
По теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов.
AD²=AC²+CD²
P=AB+BC+CD+AD
P=6+6+6+12=30