В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
anastasiyakorc
anastasiyakorc
19.10.2022 04:41 •  Геометрия

Такое дело. нам учительница показала , а мы на уроке не смогли сделать. мне нужно доказательство как это получилось. говорили что само доказательство маленькое. заранее . (забыл написать, что c1a1 - средняя линия)

Показать ответ
Ответ:
aksinaa9
aksinaa9
15.10.2021 19:51
Казахстан — страна, которая богата разными природными ресурсами. здесь достаточно большой объем полезных ископаемых, среди которых есть и нефть.  нефть и горючий газ накапливаются в пористых породах, называемых коллекторами. хорошим коллектором является пласт песчаника, заключенный среди непроницаемых пород, таких как глины или глинистые сланцы, препятствующих утечке нефти и газа из природных резервуаров. наиболее благоприятные условия для образования месторождений нефти и газа возникают в тех случаях, когда пласт песчаника изогнут в складку, обращенную сводом кверху. при этом верхняя часть такого купола часто бывает заполнена газом, ниже располагается нефть, а еще ниже - вода.
0,0(0 оценок)
Ответ:
anastasia1292
anastasia1292
11.05.2022 20:03

1) определение перпендикуляра и наклонной.

пусть дана плоскость и не лежащая на ней точка.

тогда:

·   отрезок прямой, перпендикулярной плоскости, соединяющий данную точку с точкой на плоскости называется перпендикуляром из данной точки к данной плоскости.

·   конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.

·   любой отрезок, соединяющий данную точку с точкой на плоскости и не являющийся перпендикуляром к плоскости, называется наклонной.

·   конец отрезка, лежащий в плоскости, называется основанием наклонной.

рис. 1.

на рисунке из точки а проведены к плоскости α перпендикуляр ав и наклонная ас. точка в - основание перпендикуляра, точка с - основание наклонной, вс - проекция наклонной ас на плоскость α.

2) доказательство того, что перпендикуляр корочек наклонной

 

на рисунке 2 изображена плоскость α, перпендикуляр к ней ao, наклонная ab, а также показан отрезок bo, соединяющий основания наклонной и перпендикуляра. отрезки ao, bo и ab образуют δaob.

рис. 2.

рассмотрим δaob, из определения перпендикуляра следует, что он прямоугольный. перпендикуляр ao является катетом этого треугольника, а наклонная ab – его гипотенузой. катет прямоугольного треугольника всегда меньше его гипотенузы (по теореме пифагора), следовательно, перпендикуляр всегда короче наклонной.

3) определение проекции

отрезок, соединяющий основания перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной.

 

отрезок bo на рисунке 2 – является проекцией наклонной ab.

4) теорема о сравнительной длине наклонных и их проекций

а) любая наклонная больше своей проекции.

доказательство:

вновь рассмотрим δaob, изображенный на рис. 2, из определения перпендикуляра следует, что он прямоугольный. проекция bo является катетом этого треугольника, а наклонная ab – его гипотенузой, т. к. катет прямоугольного треугольника всегда меньше его гипотенузы, следовательно, проекция наклонной на плоскость всегда короче самой наклонной.

б) равные наклонные имеют равные проекции

доказательство: рассмотрим треугольники aob и aod, они равны, т. к. равны их гипотенузы ab и ad, и углы aob и aod (они прямые), а сторона ao у них общая. из равенства треугольников следует и равенство их сторон bo = od, что и требовалось доказать.

 

в) если проекции наклонных равны, то и наклонные равны. доказывается аналогично утверждению б.

г) большей наклонной соответствует большая проекция.

доказательство:

рассмотрим прямоугольные треугольники aob и aod, ab > ad.

=  

=  

но так как ab > ad => ab2 > ad2 => >   =>

=> bo > do. что и требовалось доказать.

 

д) из двух наклонных больше та, у которой проекция больше. доказывается аналогично г.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота