Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
4. а)
5. а)
6. б)
7. а)
8. Да
9. г)
10. в)
Объяснение:
4. углы у равнобедренного треугольника при основании равны.
5. медиана - это своего рода биссектриса, а биссектриса делит угол пополам, следовательно, градусная мера угла АВС = 66 градусам.
6. если треугольник равнобедренный, то это не значит, что он равносторонний.
7. боковые стороны равностороннего треугольника равны, углы при основании тоже, следовательно равносторонний треугольник можно считать равнобедренным.
9. P=AB+BC+AC
AB=BC (как стороны равнобедренного треугольника)
AC= P-2AB
AC=7
10. P=AB+BC+AC
АВ=ВС=10
P= 26 (см)