Проведем из этой точки к прямой перпендикуляр, обозначим его у (он и будет нашим искомым расстоянием) проекцию одной прямой обозначим 9х, второй - 16 х имеем два прямоугольных треугольника с общим катетом по теореме Пифагора верно равенство: y^2 = 15^2 - (9x)2 это для первого треугольника y^2 = 20^2 - (16x)^2 это для второго треугольника приравниваем 15^2 - (9x)^2 = 20^2 - (16x)^2 225 - 81x^2 = 400 - 256x^2 175 x^2 = 175 x^2 = 175/175 = 1 x = √1 = 1 теперь по т. Пифагора находим расстояние от точки до прямой: y = √(15^2 - (9x)^2) = √(225 - 81) = √144 = 12 см
Вначале будет удобнее просто нарисовать три пересекающиеся прямые. И тогда мы увидим, что углы 1 и 4, 2 и 5, 3 и 6 - вертикальные, то есть равные. Тогда ∠5 = ∠2 = 112°.
Далее обозначим ∠6 за x, а ∠1 = x + 10.
Теперь посчитаем, чему будет равна сумма всех углов, кроме 2-ого и 5-ого:
360° - 112° * 2 = 360° - 224° = 136°
Тогда:
∠1 + ∠3 + ∠4 + ∠6 = 136°
2x + 2*(x + 10) = 136°
4x + 20° = 136°
4x = 116°
x = 29°
x + 10° = 39.
Теперь мы знаем первый и шестой углы. Четвертый и третий углы им равны соответственно, 39° и 29° (вертикальные углы). Все углы найдены!
проекцию одной прямой обозначим 9х, второй - 16 х
имеем два прямоугольных треугольника с общим катетом
по теореме Пифагора верно равенство:
y^2 = 15^2 - (9x)2 это для первого треугольника
y^2 = 20^2 - (16x)^2 это для второго треугольника
приравниваем 15^2 - (9x)^2 = 20^2 - (16x)^2
225 - 81x^2 = 400 - 256x^2
175 x^2 = 175
x^2 = 175/175 = 1
x = √1 = 1
теперь по т. Пифагора находим расстояние от точки до прямой:
y = √(15^2 - (9x)^2) = √(225 - 81) = √144 = 12 см
∠ 1 = 39°,
∠ 2 = 112°,
∠ 3 = 29°,
∠ 4 = 39°,
∠ 5 = 112°,
∠ 6 = 29°.
Вначале будет удобнее просто нарисовать три пересекающиеся прямые. И тогда мы увидим, что углы 1 и 4, 2 и 5, 3 и 6 - вертикальные, то есть равные. Тогда ∠5 = ∠2 = 112°.
Далее обозначим ∠6 за x, а ∠1 = x + 10.
Теперь посчитаем, чему будет равна сумма всех углов, кроме 2-ого и 5-ого:
360° - 112° * 2 = 360° - 224° = 136°
Тогда:
∠1 + ∠3 + ∠4 + ∠6 = 136°
2x + 2*(x + 10) = 136°
4x + 20° = 136°
4x = 116°
x = 29°
x + 10° = 39.
Теперь мы знаем первый и шестой углы. Четвертый и третий углы им равны соответственно, 39° и 29° (вертикальные углы). Все углы найдены!