ответ:Треугольник равнобедренный,т к у него два равных угла,а против равных углов лежат равные стороны
Если угол при вершине треугольника равен 74 градуса,то углы при основании равны
(180-74):2=106:2=53 градуса
Биссектрисы поделили эти углы на равные части
53:2=26,5 градусов
Большой угол при пересечении биссектрис равен
180-26,5•2=180-53=127 градусов
Объяснение:При пересечении биссектрис,проведённых из углов при основании треугольника,получился равнобедренный треугольник,углы при основании которого равны по 26,5 градусов,а угол при вершине 127 градусов
ответ:Треугольник равнобедренный,т к у него два равных угла,а против равных углов лежат равные стороны
Если угол при вершине треугольника равен 74 градуса,то углы при основании равны
(180-74):2=106:2=53 градуса
Биссектрисы поделили эти углы на равные части
53:2=26,5 градусов
Большой угол при пересечении биссектрис равен
180-26,5•2=180-53=127 градусов
Объяснение:При пересечении биссектрис,проведённых из углов при основании треугольника,получился равнобедренный треугольник,углы при основании которого равны по 26,5 градусов,а угол при вершине 127 градусов
1) 90°
2) 60°
3) 90°
Объяснение:
1. ВВ₁ и AD - скрещивающиеся прямые.
АА₁║ВВ₁, значит угол между ВВ₁ и AD будет равен углу между АА₁ и AD:
∠(BB₁; AD) = ∠(AA₁; AD) = 90° (смежные стороны квадрата)
2. DC₁ и DA₁.
Достроим треугольник DA₁C₁. Этот треугольник равносторонний, так как его стороны - диагонали равных квадратов. Значит,
∠(DC₁; DA₁) = ∠A₁DC₁ = 60°
3. С₁D и A₁D₁ - скрещивающиеся.
AD║A₁D₁, значит
∠(C₁D; A₁D₁) = ∠(C₁D; AD) = ∠C₁DA
AD║B₁C₁, AD = B₁C₁, значит AB₁C₁D - параллелограмм.
Диагонали куба равны, тогда AC₁ = DB₁, но это и диагонали параллелограмма AB₁C₁D, значит AB₁C₁D - прямоугольник.
∠C₁DA = 90°.