Все задачи изображены на рисунке в приложении. 1) Координаты вектора MN(7-4; -9-5) = MN(3;-4) - ОТВЕТ. 2) Длина вектора по теореме Пифагора R = √(3²+4²) = √25 = 5 - ОТВЕТ 3) Координаты середины отрезка - среднее арифметическое координат концов отрезка. Сх= (-10 + (-2)/2 = -6 Су= (5 + 1)/2 = 3 и окончательно С(-6;3) - ОТВЕТ 4) Находим вектор АВ(-8;4) и по теореме Пифагора длину отрезка AB = √(8²+4²) = √80 =√16*5 = 4√5 - ОТВЕТ 5) Координаты точки D - середины отрезка АС. Dx = (4-2)/2 = 1 Dy = (-3 +1)/2 = -1 Окончательно координаты точки D(1;-1) - ОТВЕТ
Воспользуемся признаком подобия треугольников по двум сторонам и углу между ними: Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
общий Значит Δ подобен Δ Из подобия треугольников
тогда по признаку параллельности прямых по равенству соответственных углов : ║ ч. т. д.
1) Координаты вектора MN(7-4; -9-5) = MN(3;-4) - ОТВЕТ.
2) Длина вектора по теореме Пифагора
R = √(3²+4²) = √25 = 5 - ОТВЕТ
3) Координаты середины отрезка - среднее арифметическое координат концов отрезка.
Сх= (-10 + (-2)/2 = -6
Су= (5 + 1)/2 = 3 и окончательно
С(-6;3) - ОТВЕТ
4) Находим вектор АВ(-8;4) и по теореме Пифагора длину отрезка
AB = √(8²+4²) = √80 =√16*5 = 4√5 - ОТВЕТ
5) Координаты точки D - середины отрезка АС.
Dx = (4-2)/2 = 1
Dy = (-3 +1)/2 = -1
Окончательно координаты точки
D(1;-1) - ОТВЕТ
∈
∈
см
см
см
см
Доказать, что ║
Воспользуемся признаком подобия треугольников по двум сторонам и углу между ними:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
общий
Значит Δ подобен Δ
Из подобия треугольников
тогда по признаку параллельности прямых по равенству соответственных углов : ║
ч. т. д.