Стороны параллелограмма соотносятся как 7:4, а периметр равен 105,6 см. Вычисли стороны параллелограмма. Большая сторона равна -? Меньшая сторона равна
Сложность в том, что у меня нет возможности построить эту пирамиду, но поскольку тут проверяется масса формул, попробую объяснить без рисунка. Объем пирамиды равен произведению трети площади основания на высоту. Площадь основания - площадь правильного треугольника, равна а²√3/4, чтобы найти сторону основания а, надо связать ее формулой с радиусом вписанной в основание окружности, а₃=2r*tg(180°/3)=2r*tg60°=2r*√3, и тогда площадь основания 4*r²*3√3/4=r²*3√3; высота основания, т.е. высота правильного треугольника равна а₃√3/2=2r*√3*√3/2=3r, а треть высоты равна проекции апофемы на плоскость основания, угол, образованный апофемой и этой проекцией, и есть данный в условии, угол γ, т.к. апофема перпендикулярна стороне основания, то по теореме о трех перпендикулярах и проекция ей перпендикулярна. Треть высоты основания равна 3r/3=r. Чтобы найти высоту пирамиды, надо проекцию апофемы умножить на tgγ, т.е. высота равна r*tgγ.
Объем пирамиды равен r²*3√3*r*tgγ/3=r в кубе √3*tgγ
Если все двугранные углы при ребрах основания равны, то вершина пирамиды проецируется в центр вписанной в основание окружности, то есть в центр квадрата (основания). Итак, пирамида правильная. Тогда из прямоугольного треугольника (высота и половина основания - катеты, а апофема - гипотенуза) по Пифагору находим эту апофему. Она равна √(9+16) = 5 (эту величину можно найти без вычислений, так как треугольник пифагоров: стороны его 3,4 и 5) Тогда одной площадь грани равна половина стороны основания, умноженная на апофему: 5*4=20см. А площадь боковой поверхности пирамиды (это 4 равных грани) равна 20*4 =80см².
Сложность в том, что у меня нет возможности построить эту пирамиду, но поскольку тут проверяется масса формул, попробую объяснить без рисунка. Объем пирамиды равен произведению трети площади основания на высоту. Площадь основания - площадь правильного треугольника, равна а²√3/4, чтобы найти сторону основания а, надо связать ее формулой с радиусом вписанной в основание окружности, а₃=2r*tg(180°/3)=2r*tg60°=2r*√3, и тогда площадь основания 4*r²*3√3/4=r²*3√3; высота основания, т.е. высота правильного треугольника равна а₃√3/2=2r*√3*√3/2=3r, а треть высоты равна проекции апофемы на плоскость основания, угол, образованный апофемой и этой проекцией, и есть данный в условии, угол γ, т.к. апофема перпендикулярна стороне основания, то по теореме о трех перпендикулярах и проекция ей перпендикулярна. Треть высоты основания равна 3r/3=r. Чтобы найти высоту пирамиды, надо проекцию апофемы умножить на tgγ, т.е. высота равна r*tgγ.
Объем пирамиды равен r²*3√3*r*tgγ/3=r в кубе √3*tgγ