Стороны параллелограмма равны 7 и 6. Биссектрисы углов, прилежащих к большей стороне, делят противолежащую сторону на три части. Найдите длину большей из этих частей.
1. воспользуемся тем. что скалярное произведение двух ненулевых векторов равно произведению модулей этих векторов на косинус угла между векторами. по первому рисунку IuI=√(2²+2²)*5=5√8=2*5√2=10√2; IvI=2*5=10, угол между этими векторами α=45°; поэтому скалярное произведение этих векторов равно 25*2√2*2*cos45°=25*4√2*√2/2=25*4=100
2. можно отложить от одной точки векторы →а и →m, тогда они будут одинаковы по длине, равной 2*5=10 и противоположны по направлению, т.е. угол между векторами 180°, cos180°=-1, и скалярное произведение равно
10*10*(-1)=-100
3. если же отложить от одной точки векторы →n и →d, то видим, что угол между этими векторами равен 90°, тогда скалярное произведение равно нулю, т.к. cos90°=0
9. тк треугольник равнобедренный углы при основании равны; соответственно накрестлежащие углы при секущей с будут равны. следовательно прямые а и б параллельны 10. PQ и MN параллельны: накрестлежащие углы равны MP и NQ параллельны: тругольники PNM и NPQ равны(по двум сторонам и углу между ними); следовательно стороны PM и QN равны; значит MPQN как минимум параллелограм; следовательно стороны параллельны 11.треугольники АЕВ и ДЕС подобны; следовательно накрестлежащие углы при секущей ВС(АД) равны. параллельны АБ и СД 12.то же, что и в 9. равнобедренный тругольник; углы при основании равны; m и n параллельны
1. воспользуемся тем. что скалярное произведение двух ненулевых векторов равно произведению модулей этих векторов на косинус угла между векторами. по первому рисунку IuI=√(2²+2²)*5=5√8=2*5√2=10√2; IvI=2*5=10, угол между этими векторами α=45°; поэтому скалярное произведение этих векторов равно 25*2√2*2*cos45°=25*4√2*√2/2=25*4=100
2. можно отложить от одной точки векторы →а и →m, тогда они будут одинаковы по длине, равной 2*5=10 и противоположны по направлению, т.е. угол между векторами 180°, cos180°=-1, и скалярное произведение равно
10*10*(-1)=-100
3. если же отложить от одной точки векторы →n и →d, то видим, что угол между этими векторами равен 90°, тогда скалярное произведение равно нулю, т.к. cos90°=0
ответ 1. 100; 2. -100; 3. 0
10. PQ и MN параллельны: накрестлежащие углы равны
MP и NQ параллельны: тругольники PNM и NPQ равны(по двум сторонам и углу между ними); следовательно стороны PM и QN равны; значит MPQN как минимум параллелограм; следовательно стороны параллельны
11.треугольники АЕВ и ДЕС подобны; следовательно накрестлежащие углы при секущей ВС(АД) равны. параллельны АБ и СД
12.то же, что и в 9. равнобедренный тругольник; углы при основании равны; m и n параллельны