Средняя линия трапеции равна полусумме ее оснований. Меньшее основание нам известно и оно равно 10. Осталось найти большее основание. Опустим высоту трапеции, длина высоты будет равна меньшей стороне и равна 10. У нас получились квадрат и прямоугольный треугольник. Рассмотрим прямоугольный треугольник. Т.к. острый угол равен 45, то и другой равен 45 ( по сумме углов треугольника). Значит треугольник равнобедренный с катетами равными 10. Значит большее основание равно 10+10=20. Средняя линия трапеции равна (10+20)/2=15
Объяснение: Угол между прямой и плоскостью — это угол между прямой и ее проекцией на эту плоскость.
Искомый угол - угол между диагональю АВ1 боковой грани АВВ1А1 и плоскостью АВС1D1.
Проекция АВ1 - отрезок АО, где О - точка пересечения диагоналей квадрата - грани ВСС1В1, которые пересекаются под прямым углом. .
Если ребро куба принять равным а, то по формуле диагонали квадрата АВ1=а√2, , а В1О=0,5а√2. В прямоугольном ∆ АОВ1 катет В1О, противолежащий искомому углу В1АО, равен половине гипотенузы АВ1. => sin(ВАО)=1/2=> угол между прямой AB1 и плоскостью ABC1 равен 30°
Меньшее основание нам известно и оно равно 10. Осталось найти большее основание.
Опустим высоту трапеции, длина высоты будет равна меньшей стороне и равна 10. У нас получились квадрат и прямоугольный треугольник.
Рассмотрим прямоугольный треугольник. Т.к. острый угол равен 45, то и другой равен 45 ( по сумме углов треугольника). Значит треугольник равнобедренный с катетами равными 10.
Значит большее основание равно 10+10=20.
Средняя линия трапеции равна (10+20)/2=15
ответ: 30°
Объяснение: Угол между прямой и плоскостью — это угол между прямой и ее проекцией на эту плоскость.
Искомый угол - угол между диагональю АВ1 боковой грани АВВ1А1 и плоскостью АВС1D1.
Проекция АВ1 - отрезок АО, где О - точка пересечения диагоналей квадрата - грани ВСС1В1, которые пересекаются под прямым углом. .
Если ребро куба принять равным а, то по формуле диагонали квадрата АВ1=а√2, , а В1О=0,5а√2. В прямоугольном ∆ АОВ1 катет В1О, противолежащий искомому углу В1АО, равен половине гипотенузы АВ1. => sin(ВАО)=1/2=> угол между прямой AB1 и плоскостью ABC1 равен 30°