В моём доме, в книжном шкафу живут дружно книги разных авторов, разные по содержанию и оформлению, толстые и тонкие, в красивых переплётах и совсем простые. Но все они ужасно интересные. По ночам, когда в доме всё затихает, они, наверное, тихонько разговаривают друг с дружкой. Можно попробовать представить, о чём этот разговор. Вот на верхней полке стоят толстые книги в красивых переплётах. Это классика. Пушкин и Лермонтов, Толстой и Дюма… Они важно поучают о том, как жили в старину, о балах и великих войнах, о прекрасных дамах и храбрых рыцарях. А ниже на полке – детективы и фантастика. Это взрослые сказки, послушаю их разговоры, когда подрасту. И любовные истории нашепчет книжка – подружка. Научит верить, любить, ждать. Многие книжки в шкафу считают меня своим хорошим другом. Первые детские сказки помнят, как я брала их своими маленькими ладошками. Они, конечно, слегка потрёпаны, но скорее всего, гордятся тем, что в самые ранние годы учили меня добру, что я научилась любить книги, именно разглядывая картинки на их страницах. А сколько приключений пережили мы с моей подружкой Алисой Селезнёвой из книг Кира Булычёва. Несколько лет, одна к одной собирались на полке книжки о доброй Белоснежке писательницы Софьи Прокофьевой. Они, наверное, очень горды тем, что мне бороться со скукой, веселили своими невероятными историями, учили добру и настоящей дружбе. Я люблю свою домашнюю библиотеку и, с удовольствием, буду продолжать слушать, о чём говорят книги.
Read more: Сочинение на тему О чем говорят книги http://sochineniya-na5.ru/sochinenie-na-temu-o-chem-govoryat-knigi/
4. треугольники BMN и BAC подобны (кажется по 2 признаку :-) ) отсюда находим MN BN/MN=BC/AC 15/MN=20/15 MN=(15*15)/20=11.25 5. один из углов равен 45°, значит треугольник прямоугольный равнобедренный - третий угол также равен 45° и катеты соответственно равны. Находим их по теореме Пифагора. 2*AC²=8² 2*AC²=64 AC²=32 AC=4√2 В прямоугольном равнобедренном треугольнике высота, проведенная к основанию, является также биссектрисой и медианой, т.е. делит гипотенузу пополам. Отсюда находим высоту СD по теореме Пифагора. AC²-AD²=CD² (4√2)²-4²=32-16=16=CD² → CD=4
6. угол А равен 60°, следовательно угол В равен 30°. По теореме синусов находим второй катет АС. АС/sin30°=BC/sin60° AC=(BC/sin60°)*in30°=6√2*0.5=3√2. По теореме Пифагора находим гипотенузу АВ. АВ²=AC²+BC²=18+36=54 AB=√54=√9*√6=3√6 Площадь прямоугольного треугольника равна половине произведения катетов, т.е. S=0.5*(6*3√2)=0.5*18√2=9√2 Высоту, опущенную из вершины С (например CD), можно найти из другой формулы нахождения площади треугольника: площадь треугольника равна половине произведения стороны треугольника на высоту, опущенную на эту сторону, т.е. S=0.5*AB*CD 9√2=0,5*3√6*CD Отсюда CD=9√2/(0,5*3√6)=2√3
Read more: Сочинение на тему О чем говорят книги http://sochineniya-na5.ru/sochinenie-na-temu-o-chem-govoryat-knigi/
отсюда находим MN
BN/MN=BC/AC 15/MN=20/15 MN=(15*15)/20=11.25
5. один из углов равен 45°, значит треугольник прямоугольный равнобедренный - третий угол также равен 45° и катеты соответственно равны. Находим их по теореме Пифагора. 2*AC²=8² 2*AC²=64 AC²=32 AC=4√2
В прямоугольном равнобедренном треугольнике высота, проведенная к основанию, является также биссектрисой и медианой, т.е. делит гипотенузу пополам. Отсюда находим высоту СD по теореме Пифагора. AC²-AD²=CD² (4√2)²-4²=32-16=16=CD² → CD=4
6. угол А равен 60°, следовательно угол В равен 30°. По теореме синусов находим второй катет АС. АС/sin30°=BC/sin60° AC=(BC/sin60°)*in30°=6√2*0.5=3√2. По теореме Пифагора находим гипотенузу АВ. АВ²=AC²+BC²=18+36=54 AB=√54=√9*√6=3√6
Площадь прямоугольного треугольника равна половине произведения катетов, т.е. S=0.5*(6*3√2)=0.5*18√2=9√2
Высоту, опущенную из вершины С (например CD), можно найти из другой формулы нахождения площади треугольника: площадь треугольника равна половине произведения стороны треугольника на высоту, опущенную на эту сторону, т.е. S=0.5*AB*CD 9√2=0,5*3√6*CD Отсюда CD=9√2/(0,5*3√6)=2√3