Стороны четырехугольника пропорциональны числам а) 6, 8, 7, 15 б) 12, 19, 20, 14 в)21, 13, 14, 20 можно ли вписать окружность в такой четырехугольник? да или нет
Высота проведена к большему основанию. У нас получился прямоугольный треугольник, две стороны нам известны, находим третью по теореме Пифагора: 5²-4²=х² х²=25-16=9 х=3 Проводим высоту из второй вершины к этому же основанию.У нас получается два прямоугольных треугольника. Так трапеция равнобедренная, то гипотенузы равны Высоты одной трапеции равны, следовательно, у нас есть равные катеты Треугольники равны по гипотенузе и катету, значит, неизвестная сторона второго треугольника тоже равна 3 После проведения двух высот у нас получился квадрат, сторона которого равна меньшему основанию.Находим её: 10-3-3=4 Средняя линия равна полусумме оснований: (10+4)/2=7 Площадь трапеции равна полусумме оснований на высоту (10+4)/2 х4=28
ответ:1) 105°, 85°, 105°, 85°. 2)115°, 65°, 115°, 65°.
Объяснение:
1) Сумма углов, прилегающих к одной из сторон, равна 180°.
По условию сумма двух углов равна 210°, значит они противоположные, т. к. 210° > 180°.
Противоположные углы ромба равны ⇒ 210°:2=105°.
180°-105°=85°.
ответ: 105°, 85°, 105°, 85°.
2) Пусть х° - больший угол, тогда (х°-50°) - больший угол ромба.
Сумма двух углов ромба, прилегающих к одной стороне, равна 180°.
Составим уравнение:
х+х-50=180, 2х=230, х=115. х-50=65.
ответ: 115°, 65°, 115°, 65°.
У нас получился прямоугольный треугольник, две стороны нам известны, находим третью по теореме Пифагора:
5²-4²=х²
х²=25-16=9
х=3
Проводим высоту из второй вершины к этому же основанию.У нас получается два прямоугольных треугольника.
Так трапеция равнобедренная, то гипотенузы равны
Высоты одной трапеции равны, следовательно, у нас есть равные катеты
Треугольники равны по гипотенузе и катету, значит, неизвестная сторона второго треугольника тоже равна 3
После проведения двух высот у нас получился квадрат, сторона которого равна меньшему основанию.Находим её: 10-3-3=4
Средняя линия равна полусумме оснований:
(10+4)/2=7
Площадь трапеции равна полусумме оснований на высоту
(10+4)/2 х4=28