В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия

сторони трикутника 4см,6см і 8см. знайдіть периметр трикутника, вершина якого є середня лінія трикутника​

Показать ответ
Ответ:
denis2016sham
denis2016sham
01.03.2021 23:53
В этих треугольниках есть общий угол С)))
а дальше по признаку подобия нужно доказать пропорциональность сторон,
образующих этот угол... в Δ АВС это стороны АС и ВС, в Δ CLK -- LC и КС
нужную пропорцию можно составить в другой паре подобных треугольников)))
здесь получатся подобными прямоугольные Δ BLC и Δ АКС -- у них тоже общий угол С и они прямоугольные))) -- другой признак подобия...
AK     AC     KC
= =
BL     BC     LC
для доказательства нужны только две последние дроби)))
это равенство можно переписать и так:
AC     KC          AC      BC
=   ⇒   =
BC    LC           KC      LC
получили строго по признаку: 
Если угол одного треугольника равен углу другого треугольника,
а стороны, образующие этот угол, пропорциональны в равном отношении, то такие треугольники подобны.
0,0(0 оценок)
Ответ:
елена1136
елена1136
18.05.2021 17:34

S = 45 см²

Объяснение:

Смотри прикреплённый рисунок.

Найдём гипотенузу BD прямоугольного треугольника BCD.

По теореме Пифагора

BD² = ВС² + СD² = 3² + 6² = 45

BD = √45 = 3√5 (см)

Поскольку BD ⊥ AC, то СО является высотой, опущенной из вершины прямого угла С треугольника ВСD.

\displaystyle CO=\frac{BC\cdot CD}{BD} = \frac{3\cdot 6}{3\sqrt{5}} = \frac{6}{\sqrt{5} }~(cm).

Известно, что высота, проведённая из вершины прямого угла данного прямоугольного треугольника делит этот треугольник на два треугольника подобных данному, поэтому ΔВОС ~ ΔCOD.

Коэффициент подобия k₁ = СD:BC = CO:BO = DO:CO

Из соотношения СD:BC = CO:BO найдём ВО

\displaystyle \frac{6}{3}= \frac{6}{\sqrt{5} }:BO \rightarrow BO= \frac{3}{\sqrt{5} } (cm)

Из соотношения СD:BC = DO:CO найдём DO

\displaystyle \frac{6}{3}=DO:\frac{6}{\sqrt{5} } \rightarrow DO= \frac{12}{\sqrt{5} } (cm)

ΔВОС ~ ΔDOA по двум углам ( ∠СВО = ∠ADO - накрест лежащие при BC || AD и секущей BD: ∠BCO = ∠DAO - накрест лежащие углы при BC || AD и секущей АС)

k₂ = DO:BO = AD:BC

\displaystyle \frac{12}{\sqrt{5} } : \frac{3}{\sqrt{5} }= AD : 3 \rightarrow AD=12 (cm)

Площадь трапеции

\displaystyle S = \frac{BC+AD}{2} \cdot CD = \frac{3+12}{2} \cdot 6 = 45(cm^{2} )


Дано авсд-прямоугольная трапеция. (угол д = углу с =90градусов) вс=3см, сд=6см. вд перпендикулярен а
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота