20см
Объяснение:
1) Стороны (отрезки) обычно обозначаются большими буквами: АС, AD и угол ACD,
а маленькими буквами обозначают, например, прямая а, прямая b и т. д.
2) выч (И) сления = чИсла
ABCD - прямоугольник
АС - его диагональ
Треугольник ACD:
AC = 12 см
AD = 10 см
L ADC = 90 град.
L ACD = 60 град.
=>
L CAD = 180 - (L ADC + L ACD) = 180 - (90 + 60) = 30 град.
Против угла в 30 град. лежит сторона = 1\2 гипотенузы =>
CD = 1\2 * AC = 1\2 * 12 = 6 см - вторая сторона прямоугольника
(хотя если решать по теореме Пифагора, то
CD^2 = AC^2 - AD^2 = 12^2 - 10^2 = 144 - 100 = 44 = 6,63 cм,
но это неточность составителя этой задачи, то есть треугольника с АС = 12, AD = 10 и углом ACD в 60 град. быть не может).
Но раз в условии дан угол, будем считать, что CD = 6 cм.
S (ABCD) = AD * CD = 10 * 6 = 60 см^2 - площадь ABCD
P (ABCD) = 2 * (AD + CD) = 2 * (10 + 6) = 32 см - периметр ABCD
Площа трикутника за найпоширенішою формулою рівна половині добутку основи на висоту, проведеної до неї. Виконуємо обчислення
S= 24*16/2=192 (кв. см.)
Для визначення периметру нам потрібно відшукати довжину бічної сторони.
У рівнобедреному трикутнику висота, проведена до основи в, є бісектрисою і медіаною.
За теоремою Піфагора знаходимо бічну сторону трикутника
b=sqrt(16^2+(24/2)^2)=20 (cм)
Периметр - сума всіх сторін
P= 2*20+24=64 (см)
Знаходимо радіус вписаного в трикутник кола за формулою
r=S/(2*P)=192/(64/2)=192/32=6 (см).
ЗАДАЧА 2 Основа рівнобедреного трикутника дорівнює 24 см бічна сторона 13 см. Обчисліть площу трикутника?
Розв'язання: Площа рівна пів добутку основи на висоту.
Основа нам відома, висоту знаходимо за теоремою Піфагора
h=√(b²-a²/4)= √(169-144)=5 (см).
Далі обчислюємо площу
S=a*h/2=24*5/2=60 (см. кв.)
20см
Объяснение:
1) Стороны (отрезки) обычно обозначаются большими буквами: АС, AD и угол ACD,
а маленькими буквами обозначают, например, прямая а, прямая b и т. д.
2) выч (И) сления = чИсла
ABCD - прямоугольник
АС - его диагональ
Треугольник ACD:
AC = 12 см
AD = 10 см
L ADC = 90 град.
L ACD = 60 град.
=>
L CAD = 180 - (L ADC + L ACD) = 180 - (90 + 60) = 30 град.
Против угла в 30 град. лежит сторона = 1\2 гипотенузы =>
CD = 1\2 * AC = 1\2 * 12 = 6 см - вторая сторона прямоугольника
(хотя если решать по теореме Пифагора, то
CD^2 = AC^2 - AD^2 = 12^2 - 10^2 = 144 - 100 = 44 = 6,63 cм,
но это неточность составителя этой задачи, то есть треугольника с АС = 12, AD = 10 и углом ACD в 60 град. быть не может).
Но раз в условии дан угол, будем считать, что CD = 6 cм.
S (ABCD) = AD * CD = 10 * 6 = 60 см^2 - площадь ABCD
P (ABCD) = 2 * (AD + CD) = 2 * (10 + 6) = 32 см - периметр ABCD
Площа трикутника за найпоширенішою формулою рівна половині добутку основи на висоту, проведеної до неї. Виконуємо обчислення
S= 24*16/2=192 (кв. см.)
Для визначення периметру нам потрібно відшукати довжину бічної сторони.
У рівнобедреному трикутнику висота, проведена до основи в, є бісектрисою і медіаною.
За теоремою Піфагора знаходимо бічну сторону трикутника
b=sqrt(16^2+(24/2)^2)=20 (cм)
Периметр - сума всіх сторін
P= 2*20+24=64 (см)
Знаходимо радіус вписаного в трикутник кола за формулою
r=S/(2*P)=192/(64/2)=192/32=6 (см).
ЗАДАЧА 2 Основа рівнобедреного трикутника дорівнює 24 см бічна сторона 13 см. Обчисліть площу трикутника?
Розв'язання: Площа рівна пів добутку основи на висоту.
Основа нам відома, висоту знаходимо за теоремою Піфагора
h=√(b²-a²/4)= √(169-144)=5 (см).
Далі обчислюємо площу
S=a*h/2=24*5/2=60 (см. кв.)
Объяснение: