1) В основаниях призмы лежат n-угольники. Основания призмы параллельны и равны. Количество вершин призмы равно количеству вершин n-угольников, лежащих в основаниях.
Количество вершин одного основания равно n. Т.к. оснований два и они равны, то количество вершин двух оснований равно 2n. Значит количество вершин в призме равно 2n.
2n это всегда четное число, т.к. оно делится. на 2. Значит число вершин любой призмы четно.
2) В основании призмы лежит n-угольник. Он имеет n сторон, которые являются ребрами призмы. В противоположном основании такой же n-угольник с точно таким же числом сторон.
Кроме этого все вершины одного основания соединены ребрами с соответствующими вершинами другого основания. Поскольку n пар вершин соединены ребрами, то ребер (боковых) тоже n штук.
Всего ребер у призмы n+n+n=3n.
Число 3n кратно 3. Следовательно число ребер любой призмы кратно 3.
Ну смотри: Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник. т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть: (10+18)/2*3=42. ответ:42
1) В основаниях призмы лежат n-угольники. Основания призмы параллельны и равны. Количество вершин призмы равно количеству вершин n-угольников, лежащих в основаниях.
Количество вершин одного основания равно n. Т.к. оснований два и они равны, то количество вершин двух оснований равно 2n. Значит количество вершин в призме равно 2n.
2n это всегда четное число, т.к. оно делится. на 2. Значит число вершин любой призмы четно.
2) В основании призмы лежит n-угольник. Он имеет n сторон, которые являются ребрами призмы. В противоположном основании такой же n-угольник с точно таким же числом сторон.
Кроме этого все вершины одного основания соединены ребрами с соответствующими вершинами другого основания. Поскольку n пар вершин соединены ребрами, то ребер (боковых) тоже n штук.
Всего ребер у призмы n+n+n=3n.
Число 3n кратно 3. Следовательно число ребер любой призмы кратно 3.
Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник.
т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть:
(10+18)/2*3=42. ответ:42