Площадь трапеции равна произведению полусуммы оснований на высоту. Нужно вычислить высоту. 1. Начерти чертеж к задаче. Через точку пересечения диагоналей проведи перпендикуляр к основаниям трапеции - высоту. 2. Рассматриваем 2 прямоугольных равнобедренных треугольника - нижний - Н (гипотенузой является нижнее основание) и верхний - В (гипотенузой является верхнее основание). 3. Построенный через точку пересечения диагоналей перпендикуляр к основаниям трапеции представляет собой высоту трапеции и равен сумме высот, опущенных на гипотенузу в треугольниках Н и В. Высота треугольника Н равна половине гипотенузы, т.е. половине нижнего основания трапеции (это очевидно, так как углы, прилежащие к гипотенузе равны 45 градусов). Аналогично, высота треугольника В равна половине верхнего основания трапеции. 4. Отсюда следует, что высота трапеции равна полусумме верхнего и нижнего оснований трапеции, т.е. ее средней линии. Значит, площадь данной трапеции равна: S = 18/2 * 18/2 = 81 см^2.
При пересечении двух прямых образуется по два смежных угла и по два вертикальных угла. Сумма двух смежных углов равна 180 градусов. Вертикальные углы равны между собой. С условия задачи известна градусная мера двух углов, которые образовались при пересечении двух прямых, то есть — это сумма двух вертикальных углов. ответим на вопрос задачи.
1). Найдем углы, образованные при пересечении двух прямых.
(360 - 104) / 2 = 256 / 2 = 128 градусов.
ответ: При пересечении двух прямых, образовалось 4 угла, градусная мера которых равна 52, 52, 128, 128 градусов
1. Начерти чертеж к задаче. Через точку пересечения диагоналей проведи перпендикуляр к основаниям трапеции - высоту.
2. Рассматриваем 2 прямоугольных равнобедренных треугольника - нижний - Н (гипотенузой является нижнее основание) и верхний - В (гипотенузой является верхнее основание).
3. Построенный через точку пересечения диагоналей перпендикуляр к основаниям трапеции представляет собой высоту трапеции и равен сумме высот, опущенных на гипотенузу в треугольниках Н и В. Высота треугольника Н равна половине гипотенузы, т.е. половине нижнего основания трапеции (это очевидно, так как углы, прилежащие к гипотенузе равны 45 градусов). Аналогично, высота треугольника В равна половине верхнего основания трапеции.
4. Отсюда следует, что высота трапеции равна полусумме верхнего и нижнего оснований трапеции, т.е. ее средней линии. Значит, площадь данной трапеции равна: S = 18/2 * 18/2 = 81 см^2.
При пересечении двух прямых образуется по два смежных угла и по два вертикальных угла. Сумма двух смежных углов равна 180 градусов. Вертикальные углы равны между собой. С условия задачи известна градусная мера двух углов, которые образовались при пересечении двух прямых, то есть — это сумма двух вертикальных углов. ответим на вопрос задачи.
1). Найдем углы, образованные при пересечении двух прямых.
(360 - 104) / 2 = 256 / 2 = 128 градусов.
ответ: При пересечении двух прямых, образовалось 4 угла, градусная мера которых равна 52, 52, 128, 128 градусов