Решение (довольно подробное) 1) проведем отрезки( красные) , параллельно к АВ 2) из ΔЕСД по Фалесу имеем КД=ЕД/3=2а/3 3) абсцисса т.К ( и т.N тоже !) будет = 3а-2а/3=7а/3 4)координаты т.N будут N(7a/3;b) 5) составляем ур-е прямой AN : A(0;0) N(7a/3;b) причем выделяем х! x=7ay/3b 6)составляем ур-ие прямой МД М(0;2b) Д(3a;0) x=3a-3ay/2b 7)приравниваем ( находим координату у их точки пересечения)
все просто решается и получается у=18b/23 значит, высота искомого треугольника к высоте трапеции = относшению ординат тоски пересечения к т. В
h/H=(18b/23)/(3b)= 6/23 т.е. высота искомого треуг. будет 6/23 высоты трапеции h=6H/23
Решение (довольно подробное)
1) проведем отрезки( красные) , параллельно к АВ
2) из ΔЕСД по Фалесу имеем КД=ЕД/3=2а/3
3) абсцисса т.К ( и т.N тоже !) будет = 3а-2а/3=7а/3
4)координаты т.N будут N(7a/3;b)
5) составляем ур-е прямой AN : A(0;0) N(7a/3;b) причем выделяем х!
x=7ay/3b
6)составляем ур-ие прямой МД М(0;2b) Д(3a;0)
x=3a-3ay/2b
7)приравниваем ( находим координату у их точки пересечения)
все просто решается и получается у=18b/23
значит, высота искомого треугольника к высоте трапеции = относшению ординат тоски пересечения к т. В
h/H=(18b/23)/(3b)= 6/23
т.е. высота искомого треуг. будет 6/23 высоты трапеции
h=6H/23
Sтрап=(3a+a)/2*H=2aH=23 ⇒ aH=23/2
Sтреуг=(3a*6H/23)/2=9aH/23 подставляя aH=23/2 получаем
Sтреуг=9*(23/2)/23=4.5
∆ АDК и АDС прямоугольные и равны по катету ( DС=DК -дано) и общей гипотенузе АD. ⇒
АК=АС и углы САD=КAD,⇒
АД - биссектриса угла ВАС.
Примем коэффициент отношения АК:КВ равным а. Тогда АВ=9а+8а=17а., АС=АК=8а
По т.Пифагора ВС=√(АВ²-АС²)=√225a²=15a
Периметр АВС=17а+15а+8а=40а
40а=80
а=2
СВ=30, АС=16, АВ=34 .
Биссектриса угла треугольника делит противолежащую углу сторону на отрезки, пропорциональные двум другим сторонам:
СД:ДВ=АС:АВ
Примем CD=х
х:(30-х)=16:34
34х=480-16х
50х=480
х=9,6 (ед. длины)