Решение: Так как диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам, то имеем четыре равных прямоугольных Δ-а: АВО, СВО, АДО и СДО (где т.О - точка пересечения диагоналей).
Рассмотрим один из них - ΔАВО: ∠АОВ=90°, АО=АС÷2=3√3 см, ВО=ВД÷2=9 см. Используя теорему Пифагора, узнаем длину гипотенузы АВ: АВ²=АО²+ВО²=(3√3)²+9²=9×3+81=108=27×4=3×9×4=6√3 см.
Мы имеем гипотенузу АВ в два раза бОльшую, чем катет АО, что согласно свойству прямоугольного треугольника позволяет нам сделать вывод, что ∠АВО=30°. Тогда ∠ВАО=180-90-30=60°.
Из равенства треугольников следует равенство соответствующих углов, что даёт результат: ∠ВАС=∠ВСД=60×2=120°, ∠АВС=∠АДС=30×2=60°. Задача решена.
Примечание: Определив длину гипотенузы, мы можем обратить внимание, что АВ=АС, т.е. каждая из сторон ромба (которые равны между собой по определению) равна меньшей диагонали. Значит, ΔАВС=ΔАДС, они равносторонние, и их углы равны 60°. Что даёт нам те же 60 и 120 градусов углов ромба.
2. Абсолютно аналогично 1). получаем:
АВ²=5²+(5√3)²=25+75=100, АВ=10 см, что опять таки равно диагонали (или в два раза больше катета, кому как нравится). ⇒
Расстояние от точки до прямой равно длине перпендикуляра, проведенного из этой точки к данной прямой.
Проведем МН⊥АD.
ВН - проекция наклонной МН и по т. о 3-х перпендикулярах
∠ ВНА=∠BHD=90°
∆ АНВ- прямоугольный с гипотенузой АВ=5 и острым углом А=45°. Сумма острых углов прямоугольного треугольника равна 90°, поэтому угол АВН=45°,⇒
∆ АВН- равнобедренный и ВН=АВ•sin 45º=2,5√2
Угол МВН прямой по условию ( отрезок, перпендикулярный плоскости, перпендикулярен любой прямой, проходящей через его основание).
Из прямоугольного ∆ MВН по т.Пифагора
МН=√(ВН² +ВМ² )=√(12,5+100)=7,5√2 см - это искомое расстояние.
60° и 120°
Объяснение:
1). Дано: АВСД - ромб; АС=6√3 см; ВД=18 см.
Найти углы ромба.
Решение: Так как диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам, то имеем четыре равных прямоугольных Δ-а: АВО, СВО, АДО и СДО (где т.О - точка пересечения диагоналей).
Рассмотрим один из них - ΔАВО: ∠АОВ=90°, АО=АС÷2=3√3 см, ВО=ВД÷2=9 см. Используя теорему Пифагора, узнаем длину гипотенузы АВ: АВ²=АО²+ВО²=(3√3)²+9²=9×3+81=108=27×4=3×9×4=6√3 см.
Мы имеем гипотенузу АВ в два раза бОльшую, чем катет АО, что согласно свойству прямоугольного треугольника позволяет нам сделать вывод, что ∠АВО=30°. Тогда ∠ВАО=180-90-30=60°.
Из равенства треугольников следует равенство соответствующих углов, что даёт результат: ∠ВАС=∠ВСД=60×2=120°, ∠АВС=∠АДС=30×2=60°. Задача решена.
Примечание: Определив длину гипотенузы, мы можем обратить внимание, что АВ=АС, т.е. каждая из сторон ромба (которые равны между собой по определению) равна меньшей диагонали. Значит, ΔАВС=ΔАДС, они равносторонние, и их углы равны 60°. Что даёт нам те же 60 и 120 градусов углов ромба.
2. Абсолютно аналогично 1). получаем:
АВ²=5²+(5√3)²=25+75=100, АВ=10 см, что опять таки равно диагонали (или в два раза больше катета, кому как нравится). ⇒
∠В=∠Д=60°; ∠А=∠С=120°.