Объяснение: обозначим радиус r, a высоту h. Если r/h=1/2, то: h=2r. 2 радиуса
- это диаметр, и диаметр основания равен высоте. Высота, радиус и диагональ осевого сечения цилиндра образуют равнобедренный прямоугольный треугольник, в котором диаметр основания и высота являются катетами а диагональ гипотенузой. В равнобедренном прямоугольном треугольнике гипотенуза больше катета в √2 раз, поэтому h=диаметру=12√2/√2=
=12, тогда радиус=12/2=6
Найдём площадь основания по формуле:
Sосн=πr²=π×6²=36π
Теперь найдём объем цилиндра зная его площадь основания и высоту по формуле: V=Sосн×h=36π×12=432π(ед³)
Формула объёма конуса: , где
S - площадь основания
h - высота конуса
Т.к. основанием конуса является круг, то
Формула площади круга: , где
π - число пи
R - радиус круга
Как мы знаем радиус - половина диаметра ⇒ формула может выглядеть и так:
Получается формула объёма конуса становится такой:
Теперь пусть d - диаметр нового конуса, тогда 2,5d - первоначальный диаметр конуса
V₁ - первоначальный объём конуса, а V₂ - новый объём конуса
Получается:
Теперь ищем
и h сокращаются, получается:
ответ: в 6,25 раз уменьшится V конуса
ответ: 432π
Объяснение: обозначим радиус r, a высоту h. Если r/h=1/2, то: h=2r. 2 радиуса
- это диаметр, и диаметр основания равен высоте. Высота, радиус и диагональ осевого сечения цилиндра образуют равнобедренный прямоугольный треугольник, в котором диаметр основания и высота являются катетами а диагональ гипотенузой. В равнобедренном прямоугольном треугольнике гипотенуза больше катета в √2 раз, поэтому h=диаметру=12√2/√2=
=12, тогда радиус=12/2=6
Найдём площадь основания по формуле:
Sосн=πr²=π×6²=36π
Теперь найдём объем цилиндра зная его площадь основания и высоту по формуле: V=Sосн×h=36π×12=432π(ед³)