Сторона равностороннего треугольника равна 2√3 мм. Вычисли: 1) площадь треугольника 2) радиус окружности, вписанной в треугольник 3) радиус окружности, описанной около треугольника
пусть дана равнобедренная трапеция ABCD. AB=CD, BC и AD - основания. Проведем диагональ АС. Тогда по условию угол АСD = 90⁰ . Так как ВС=АВ=СD ( по условию) , то треугольник АВС - равнобедренный. угол ВАС=ВСА. Пусть угол ВСА=ВАС=х. Рассмотрим параллельные прямые ВС и АD и секущую АС. По свойсвам секущей к параллельным прямым угол ВСА=САD=х. Теперь рассмотрим ΔАВС. В нем угол АВС равен 180⁰-2х. В трапеции угол ВСD = х+90⁰. Тогда получаем по свойствам трапеции равенство: 180⁰-2х=х+90⁰ ⇒ 90⁰ =3х ⇒ х=30⁰. То есть углы ВАС, ВСА, САD равны по 30⁰. Найдем углы трапеции: угол ВАD=2х=СDА=60⁰ ; угол АВС=180-2х=ВСD= 120⁰
пусть дана равнобедренная трапеция ABCD. AB=CD, BC и AD - основания. Проведем диагональ АС. Тогда по условию угол АСD = 90⁰ . Так как ВС=АВ=СD ( по условию) , то треугольник АВС - равнобедренный. угол ВАС=ВСА. Пусть угол ВСА=ВАС=х. Рассмотрим параллельные прямые ВС и АD и секущую АС. По свойсвам секущей к параллельным прямым угол ВСА=САD=х. Теперь рассмотрим ΔАВС. В нем угол АВС равен 180⁰-2х. В трапеции угол ВСD = х+90⁰. Тогда получаем по свойствам трапеции равенство: 180⁰-2х=х+90⁰ ⇒ 90⁰ =3х ⇒ х=30⁰. То есть углы ВАС, ВСА, САD равны по 30⁰. Найдем углы трапеции: угол ВАD=2х=СDА=60⁰ ; угол АВС=180-2х=ВСD= 120⁰
ответ: 60⁰,120⁰,120⁰,60⁰.
37. Решение:
∠1=65° (как вертикальные)
∠1 и угол в 65° равны, как соответственные углы при пересечении двух прямых секущей. Отсюда прямые параллельны. Значит ∠2=78° (как соответственные)
Поскольку сумма смежных углов равна 180°, то
х=180°-∠2=180°-78°=102°
ответ: 102°
38. Решение (аналогично):
∠1=70° (как вертикальные)
∠1 и угол в 70° равны, как соответственные углы при пересечении двух прямых секущей. Отсюда прямые параллельны. Значит ∠2=50° (как соответственные)
х=∠2 (как вертикальные)
х=50°
ответ: 50°
(Чертёж в приложении)