Сделаем это задание за Теоремой про равность треугольников
Мы знаем что ab = ad тогда треугольник abd - равнобедренный треугольник и также треугольник bdc равнобедренный треугольник
Тогда за третей ознакой равенства:
1. AB = AD
2. BC = CD
3. сторона AC - общая.
Значит, ∠BAO = ∠DAO
Тогда За 1 признаку докажем что эти треугольники равны, так как мы нашли что углы равны
( Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. )
AB = AD AO - общая
∠BAO = ∠DAO за 3 ознакой. С этого ΔABO = ΔADO
Из равенства ΔABO и ΔADO вытекает равенство углов ∠BOA и ∠DOA. поэтому ∠BOA = ∠DOA = 90°. Следовательно AC⊥BD
Дано:
AO=CO
угол BAO = углу DCO
угол OCD=37⁰
угол ODC=63⁰
угол COD=80⁰
Док-ть:
тр. AOB = тр. COD
Найти:
углы AOB, ABO, BAO - ?
Док-во:
Рассмотрим тр. AOB и COD
- AO=OC - по условию
- угол BAO = углу DCO - по условию
- угол AOB = углу COD - как вертикальные
След-но треугольники равны по стороне и двум прилежащим к ней углам.
тр. AOB = тр. COD ч.т.д.
угол BAO = углу DCO - по условию ⇒ угол BAO = 37⁰
угол COD = углу AOB - из док-ва ⇒ угол AOB = 80⁰
угол угол ABO = 180⁰-37⁰-80⁰ = 63⁰
Из вышеописанного док-ва тр. AOB = тр. COD:
угол BAO = углу DCO = 37⁰
угол COD = углу AOB = 80⁰
угол CDO = углу ABO = 63⁰
Доказано // Удачи ;D
Объяснение:
Сделаем это задание за Теоремой про равность треугольников
Мы знаем что ab = ad тогда треугольник abd - равнобедренный треугольник и также треугольник bdc равнобедренный треугольник
Тогда за третей ознакой равенства:
1. AB = AD
2. BC = CD
3. сторона AC - общая.
Значит, ∠BAO = ∠DAO
Тогда За 1 признаку докажем что эти треугольники равны, так как мы нашли что углы равны
( Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. )
AB = AD AO - общая
∠BAO = ∠DAO за 3 ознакой. С этого ΔABO = ΔADO
Из равенства ΔABO и ΔADO вытекает равенство углов ∠BOA и ∠DOA. поэтому ∠BOA = ∠DOA = 90°. Следовательно AC⊥BD
И этим мы доказали что O - середина BD
Доказано // Удачи ;D