Обозначим хорду АВ, вершины квадрата, лежащие на окружности, СD, соединим эти точки последовательно. DC||АВ, АВСD- трапеция. Вписать в окружность можно только равнобедренную трапецию. Опустим из С высоту СН и проведем диагональ АС. Высота равнобедренной трапеции, опущенная из вершины тупого угла на большее основание. делит его на два отрезка, из которых меньший равен полуразности, больший – полусумме оснований. ВН=2, АН=4 Треугольник АСВ вписан в тот же сегмент, что и квадрат, его высота СН – сторона квадрата и равна 2 см. Радиус описанной около треугольника окружности находят по формуле R=a•b•c:4S, т.е. он равен произведению сторон треугольника, деленному на его учетверенную площадь По т.Пифагора АС=√(AH²+CH²)=√(16+4)=2√5 По т.Пифагора ВС=√(CH²+BH²)=√8=2√2 S (АВС)=СН•AB:2=2•6:2=6 (см²) a•b•c=6•2√5•2√2=24√10 4S=24 R=24√10:24=√10 (см) Или, используя найденные выше значения АС и ВС:
Высота равнобедренной трапеции, опущенная из вершины тупого угла на большее основание. делит его на два отрезка, из которых меньший равен полуразности, больший – полусумме оснований.
ВН=2, АН=4
Треугольник АСВ вписан в тот же сегмент, что и квадрат, его высота СН – сторона квадрата и равна 2 см.
Радиус описанной около треугольника окружности находят по формуле R=a•b•c:4S, т.е. он равен произведению сторон треугольника, деленному на его учетверенную площадь
По т.Пифагора АС=√(AH²+CH²)=√(16+4)=2√5
По т.Пифагора ВС=√(CH²+BH²)=√8=2√2
S (АВС)=СН•AB:2=2•6:2=6 (см²)
a•b•c=6•2√5•2√2=24√10
4S=24
R=24√10:24=√10 (см)
Или,
используя найденные выше значения АС и ВС:
По т.синусов
см
Задача 1
Катет лежащий напротив угла 30 град. равен половине гипотенузы.
7,6*2=15,2 см длина гипотенузы.
ответ 15,2 см
Задача 2.
Если угол при вершине в равнобедренном треугольнике = 120, то углы при основании =(180-120)/2=30град.
Основание это искомая гипотенуза =5*sin 30=5*1/2=2.5 см
ответ 2,5 см
Задача 3.
Третий угол будет равен 30 град.
Мы знаем что катет лежащий напров угла 30 град равен половине гипотенузы. Составим уравнение.
х-длина гипотенузы
х/2 - длина катета
х+х/2=36
2х+х=72
3х=72
х=24 см длина гипотенузы
24/2=12 см меньший катет
ответ 12 см.
Объяснение: