сторона квадрата а. в данном квадрат вписан квадрат таким образом, что его вершины делят сторону данного квадрата в отношении 2: 9 найди площадь вписанного квадрата.
Диссимиля́ция (от лат. dis- — приставка, означающая разделение, отрицание («раз/рас») и similis «подобный», то есть «расподобление», «расхождение») — в фонетике и фонологии под диссимиляцией понимают процесс обратный ассимиляции, то есть два или более одинаковых или близких по типу звука расходятся в произношении всё дальше. В целом, диссимиляция выражается в замене одного из двух одинаковых или похожих (по месту образования) звуков другим, менее сходным по артикуляции с тем, который остался без изменений. Как феномен встречается несколько реже ассимиляции, хотя статистически её частотность варьирует в зависимости от конкретного языка.
Мы знаем, во-первых, теорему Пифагора: a^2 + b^2 = c^2, где a,b - катеты, c - гипотенуза. В нашем случае, раз треугольник равнобедренный, то a=b и теорема примет вид: a^2 + a^2 = c^2 2 * a^2 = c^2 Во-вторых, мы знаем выражение для площади прямоугольного треугольника: S = 1/2 * a * b (частный случай формулы площади в общем виде, где S = 1/2 * a * h). Зная, что a = b, площадь примет вид: S = 1/2 * a * a = 1/2 * a^2 Сопоставляя первое и второе выражения, видим, что c^2 = 4 * S Отсюда, подставляя имеющееся значение: c^2 = 4 * 50 = 200 c = корень из 200 = 2 * (корень из 10)
Диссимиля́ция (от лат. dis- — приставка, означающая разделение, отрицание («раз/рас») и similis «подобный», то есть «расподобление», «расхождение») — в фонетике и фонологии под диссимиляцией понимают процесс обратный ассимиляции, то есть два или более одинаковых или близких по типу звука расходятся в произношении всё дальше. В целом, диссимиляция выражается в замене одного из двух одинаковых или похожих (по месту образования) звуков другим, менее сходным по артикуляции с тем, который остался без изменений. Как феномен встречается несколько реже ассимиляции, хотя статистически её частотность варьирует в зависимости от конкретного языка.
a^2 + a^2 = c^2
2 * a^2 = c^2
Во-вторых, мы знаем выражение для площади прямоугольного треугольника: S = 1/2 * a * b (частный случай формулы площади в общем виде, где S = 1/2 * a * h). Зная, что a = b, площадь примет вид:
S = 1/2 * a * a = 1/2 * a^2
Сопоставляя первое и второе выражения, видим, что c^2 = 4 * S
Отсюда, подставляя имеющееся значение:
c^2 = 4 * 50 = 200
c = корень из 200 = 2 * (корень из 10)