Сторона АС треугольника АВС лежит в плоскости α. МϵАВ, NϵBC, MN||α, причём BM:AM=2:7, MN=6 см. Сделать чертёж. Найти АС. A) 18 см; B) 30 см; C) 27 см; D) 36 см.
найдите отношение площадей 2 треугольников, если стороны одного равны 36см,24 см,42 см, стороны другогоотносятся как 4:6:7,а егоменьшая сторона равнв 8 см.
Найдем стороны второго треугольника:
4/6 = 8 см / х, х = 6*8:4 = 12 см; 4/7 = 8 см/ х, х = 7*8:4 = 14 см
S произвольного треугольника = 1/2 * а*h
h = 2:а * vр(р-а)(р-в)(р-с), р - полупериметр, v - это корень
1) Данный треугольник - равнобедренный, т.к. в нем второй угол тоже 45 градусов.
Треугольник, образованный средними линиями, будет подобен исходному,
т.к. катеты нового в точке пересечения с серединой гипотенузы образуют прямой угол, а сами катеты равны половинам исходных.
Коэффициент подобия равен 2 (средняя линия равна половине стороны, которой она параллельна).
Длину катетов равнобедренного прямоугольного треугольника найдем по формуле: с²=2а², где с - гипотенуза, а - катеты 64=2а² а²=32 а=4√2 см Периметр большего треугольника равен 8+2*4√2=8(1+√2) см
Периметр треугольника, образованного средними линиями, относится к периметру исходного так же , как средние линии относятся к сторонам, которым они параллельны.
т.е 1:2
Периметр получившегося треугольника - 8(1+√2):2=4(1+√2) см
-------------------- 2) В треугольнике медианы точкой пересечения делятся в отношении 2:1, считая от вершины.
Смотрим рисунок. Точка пересечения медиан отмечена О, пересечение медианы со стороной АС - М со стороной ВС - К. Дано:
АВС- равнобедренный треугольник. ВО=14 АО=25
ОМ=ВО:2=7 см Рассмотрим треугольник АОМ. Он прямоугольный, т.к. в равнобедренном треугольника медиана=биссектриса=высота,если проведена к основанию. По теореме Пифагора найдем АМ - половину АС. АМ =√(25²-7²)=24 АС=24*2=48
ВМ=ВО:2*3=14:2*3=21 АВ=√(24²+21²)=≈31,89 см АВ=ВС=≈31,89
найдите отношение площадей 2 треугольников, если стороны одного равны 36см,24 см,42 см, стороны другогоотносятся как 4:6:7,а егоменьшая сторона равнв 8 см.
Найдем стороны второго треугольника:
4/6 = 8 см / х, х = 6*8:4 = 12 см; 4/7 = 8 см/ х, х = 7*8:4 = 14 см
S произвольного треугольника = 1/2 * а*h
h = 2:а * vр(р-а)(р-в)(р-с), р - полупериметр, v - это корень
Площадь первого треугольника.
р = (36+24+42):2 = 51 см
h = 2:24*v51(51-24)(51-36)(51-42) = 35,9 см
S = 1/2 * 24 * 35,9 = 430,8 см^2
Площадь второго треугольника.
р = (8+12+14):2 = 17
h = 2:12*v17(17-12)(17-8)(17-14) = 7,9 см
S = 1/2 * 12*7,9 = 47,4 см^2
47,4 : 430,8 = 1 : 9
ответ: отношение площадей 2 треугольников 1 : 9.
1)
Данный треугольник - равнобедренный, т.к. в нем второй угол тоже 45 градусов.
Треугольник, образованный средними линиями, будет подобен исходному,
т.к. катеты нового в точке пересечения с серединой гипотенузы образуют прямой угол, а сами катеты равны половинам исходных.
Коэффициент подобия равен 2 (средняя линия равна половине стороны, которой она параллельна).
Длину катетов равнобедренного прямоугольного треугольника найдем по формуле:
с²=2а², где с - гипотенуза, а - катеты
64=2а²
а²=32
а=4√2 см
Периметр большего треугольника равен
8+2*4√2=8(1+√2) см
Периметр треугольника, образованного средними линиями, относится к периметру исходного так же , как средние линии относятся к сторонам, которым они параллельны.
т.е 1:2
Периметр получившегося треугольника -
8(1+√2):2=4(1+√2) см
--------------------
2)
В треугольнике медианы точкой пересечения делятся в отношении 2:1, считая от вершины.
Смотрим рисунок.
Точка пересечения медиан отмечена О, пересечение медианы со стороной АС - М
со стороной ВС - К.
Дано:
АВС- равнобедренный треугольник.
ВО=14
АО=25
ОМ=ВО:2=7 см
Рассмотрим треугольник АОМ.
Он прямоугольный, т.к. в равнобедренном треугольника медиана=биссектриса=высота,если проведена к основанию.
По теореме Пифагора найдем АМ - половину АС.
АМ =√(25²-7²)=24
АС=24*2=48
ВМ=ВО:2*3=14:2*3=21
АВ=√(24²+21²)=≈31,89 см
АВ=ВС=≈31,89