Войти
Регистрация
Спроси ai-bota
В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Показать больше
Показать меньше
Winxsori
27.04.2020 01:32 •
Геометрия
Сторона ab треугольника abc равна 16 см, угол a=30 градусов, угол b=105 градусов. : 1) вычислите длину стороны bc 2) найдите меньшую сторону треугольника любой спам будет удален!
Показать ответ
Ответ:
sumr212
22.09.2020 22:29
По теореме синусов:
Меньшая сторона треугольника - ВС.
0,0
(0 оценок)
Ответ:
Valentina54
22.09.2020 22:29
AB =16 ; ∠A =30° ; ∠B =105° .
1) BC -?
2) (меньшая сторона) -?
1) AB/sin∠C =BC/sinA = AC/sin∠B = 2R (теорема синусов).
∠C =180° -(∠A +∠B )= 180° -(30° +105°) =45°.
16/sin45° =BC/sin30°⇒
BC =15*(sin30°/sin45°) =16*(1/2) / (1/√2) =(16√2)/2 =8√2≈11,28 (см).
---
2) меньшая сторона та, которая лежит против меньшего угла ,
эта сторона BC(лежит против меньшего угла ∠A=30°).
длину AC не требуется , но :
AC /sin∠B = AB/sin∠C ⇒AC =AB*sin(∠B)/(sin∠C)=
16* sin105°/(1/√2) =16√2sin105°=16√2*√2(√3 +1)/4 =8(√3 +1) .
sin105° =sin(180°-75°) =sin75°=sin(45°+30°) =...
или
sin105° =sin(60°+45°) =sin60°*cos45°+cos60°*sin45°=
(√3/2)*(√2/2)+(1/2)*(√2/2) =√2(√3 +1)/4.
* * * * * * * Второй
∠C =180° -(∠A+∠B) =180° -(30°+105°) =45°.
Проведем высоту BH⊥AC (∠AHB=90°) ⇒ Прямоугольный треугольник BHC равнобедренный CH =BH ,т.к. ∠C =45°.
По теореме Пифагора из ΔBHC:
BC =√ (BH² +CH²) =√(2BH²) =BH√2 . Но из ΔABH BH=AB/2 =8(как катет против угла
∠A =30°). Значит BC =BH√2 =8√2.
0,0
(0 оценок)
Популярные вопросы: Геометрия
danilworld
24.08.2020 03:00
6. Найдите неизвестные длины (рис. 2), и вычислите синус, косинус, тангенс и котангенс острых углов....
ovenovsp00yl2
08.09.2021 17:34
Ортогональной проекцией треугольника, площадь которого равна 8 cm ^ 2, равносторонний треугольник со стороной 4 см. Найти угол между плоскостями треугольников....
movnar98
27.12.2020 05:00
В тетраэдре DABC точка M - середина AB, DC = 8, MD=10, угол DCM = 90°. Постройте сечение тетраэдра плоскостью, проходящей через середину ребра DA параллельно плоскости...
SheriStriff
14.05.2020 23:05
Вравнобедренной трапеции острый угол равен 60°, а основания равны 16 см и 10 см . найдите периметр трапеции...
oolesyoooolesy
11.10.2021 16:44
Вравнобедренном треугольнике один из углов равен 48*. найти остальные углы....
Ксю11111111147
11.10.2021 16:44
Найдите абсолютную величину вектора . a(8; -6) !...
Золушка251
12.02.2023 13:52
знайти косинус між векторами a = 4m + 3n і b = 2m - 5n, де m і n - одиничні перпендикулярні вектори...
ева514
21.04.2020 19:14
Висоти паралелограма, проведені з вершини гострого кута, утворюють кут 1500, сторони паралелограма дорівнюють 10 і 18 см. Знайти висоти паралелограма...
Виктор338
16.06.2022 04:29
Стороны оснований правильной усечённой четырехугольной пирамиды равны 8 см и 2 см. Высота пирамиды 4 см. Найти диагональ пирамиды, S боковой, S полной....
kravchenjatkop00zs0
09.05.2020 09:20
Муравей начинает путешествие по поверхности куба от вершина А и возвращается обратно в вершину А. Дорога состоит из отрезков. Конечные точки отрезков на рёбрах расположены...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
Меньшая сторона треугольника - ВС.
1) BC -?
2) (меньшая сторона) -?
1) AB/sin∠C =BC/sinA = AC/sin∠B = 2R (теорема синусов).
∠C =180° -(∠A +∠B )= 180° -(30° +105°) =45°.
16/sin45° =BC/sin30°⇒
BC =15*(sin30°/sin45°) =16*(1/2) / (1/√2) =(16√2)/2 =8√2≈11,28 (см).
---
2) меньшая сторона та, которая лежит против меньшего угла ,
эта сторона BC(лежит против меньшего угла ∠A=30°).
длину AC не требуется , но :
AC /sin∠B = AB/sin∠C ⇒AC =AB*sin(∠B)/(sin∠C)=
16* sin105°/(1/√2) =16√2sin105°=16√2*√2(√3 +1)/4 =8(√3 +1) .
sin105° =sin(180°-75°) =sin75°=sin(45°+30°) =...
или
sin105° =sin(60°+45°) =sin60°*cos45°+cos60°*sin45°=
(√3/2)*(√2/2)+(1/2)*(√2/2) =√2(√3 +1)/4.
* * * * * * * Второй
∠C =180° -(∠A+∠B) =180° -(30°+105°) =45°.
Проведем высоту BH⊥AC (∠AHB=90°) ⇒ Прямоугольный треугольник BHC равнобедренный CH =BH ,т.к. ∠C =45°.
По теореме Пифагора из ΔBHC:
BC =√ (BH² +CH²) =√(2BH²) =BH√2 . Но из ΔABH BH=AB/2 =8(как катет против угла
∠A =30°). Значит BC =BH√2 =8√2.