Сто даю. Площина трикутника MNK паралельна площині α. Світло, що виходить із точки S, утворює на площині α тінь M1N1K1 від трикутника MNK. Обчислити площу трикутника MNK, якщо тінню є трикутник зі сторонами 30 см, 25 см, 25 см і SM : SM1 =2:3.
а) Пусть сечение пересекает плоскость верхнего основания по отрезку MN Так как основания параллельны, то прямая при этом М — середина значит, MN — средняя линия треугольника следовательно, N — середина
б) Построим сечение. Пусть Q и R — точки пересечения сечения с прямыми и соответственно. Тогда они лежат на прямой MN. Пусть теперь L и P — точки пересечения прямых AQ и CR (то есть сечения) с ребрами и соответственно. Таким образом, сечение — шестиугольник ALMNPC получаемый из прямоугольника AQRC отрезанием от него двух равных прямоугольных треугольников LMQ и NPR.
Так как основания призмы правильные шестиугольники со стороной
ответ:1) 105°, 85°, 105°, 85°. 2)115°, 65°, 115°, 65°.
Объяснение:
1) Сумма углов, прилегающих к одной из сторон, равна 180°.
По условию сумма двух углов равна 210°, значит они противоположные, т. к. 210° > 180°.
Противоположные углы ромба равны ⇒ 210°:2=105°.
180°-105°=85°.
ответ: 105°, 85°, 105°, 85°.
2) Пусть х° - больший угол, тогда (х°-50°) - больший угол ромба.
Сумма двух углов ромба, прилегающих к одной стороне, равна 180°.
Составим уравнение:
х+х-50=180, 2х=230, х=115. х-50=65.
ответ: 115°, 65°, 115°, 65°.
Решение.
а) Пусть сечение пересекает плоскость верхнего основания по отрезку MN Так как основания параллельны, то прямая при этом М — середина значит, MN — средняя линия треугольника следовательно, N — середина
б) Построим сечение. Пусть Q и R — точки пересечения сечения с прямыми и соответственно. Тогда они лежат на прямой MN. Пусть теперь L и P — точки пересечения прямых AQ и CR (то есть сечения) с ребрами и соответственно. Таким образом, сечение — шестиугольник ALMNPC получаемый из прямоугольника AQRC отрезанием от него двух равных прямоугольных треугольников LMQ и NPR.
Так как основания призмы правильные шестиугольники со стороной