Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
в параллелограмме аbcd угол а равен углу с, угол b равен углу d.
а) к примеру, возьмем параллелограмм аbcd. угол а обозначим за х, угол b за 2х (т.к один больше другого в 2 раза). сумма углов одной стороны параллелограмма равна 180 градусам. следовательно, х + 2х = 180, 3х = 180, х = 60. соответственно второй угол будет равен 120 градусам.
б) к примеру, возьмем параллелограмм аbcd. угол а обозначим за х, угол b за х-24. сумма углов одной стороны параллелограмма равна 180 градусам. следовательно, х + х - 24 = 180. 2х = 156. х = 78. следовательно, втрой угол будет равен 76-24 = 52.
ответ:
в параллелограмме аbcd угол а равен углу с, угол b равен углу d.
а) к примеру, возьмем параллелограмм аbcd. угол а обозначим за х, угол b за 2х (т.к один больше другого в 2 раза). сумма углов одной стороны параллелограмма равна 180 градусам. следовательно, х + 2х = 180, 3х = 180, х = 60. соответственно второй угол будет равен 120 градусам.
б) к примеру, возьмем параллелограмм аbcd. угол а обозначим за х, угол b за х-24. сумма углов одной стороны параллелограмма равна 180 градусам. следовательно, х + х - 24 = 180. 2х = 156. х = 78. следовательно, втрой угол будет равен 76-24 = 52.