Средняя линия равнобедренного треугольника,парал- лельная основанию,равна10.Найдите длину боковой стороны этого тре- угольника,если его периметр равен50.
Если осевым сечением является квадрат, то высота цилиндра равна его диаметру. По теореме Пифагора находим высоту и диаметр(берем их за х): 2х^2=36*2х^2 = 36 х=6.Боковая поверхность цилиндра - это прямоугольник, стороны которого - высота и длина круга(основания), а площадь боковой поверхности - это площадь этого прямоугольника.Длина круга равна 2pi*R = 6piВысота равна 6, следует Площадь боковой поверхности равна 36pi.Объем цилиндра равен произведению площади основания на высоту.Основание цилиндра - круг. Площадь круга - пи*R^2, следует Объем цилиндра равен пи*9*6 = 54pi.
Длина меньшей стороны прямоугольника = 42 см длина большей стороны = 42 + 14 = 56 см Найдем длину диагонали по теореме Пифагора: √(42²+56²) = √4900 = 70 Рассмотрим треугольник, образованный сторонами прямоугольника и диагональю. Биссектриса делит сторону треугольника на отрезки, пропорциональные двум другим сторонам треугольника (свойство биссектрисы) Обозначим один из отрезков = х, тогда второй отрезок = 70-х Пропорция: 42 относится к 56 так же как х относится к 70-х 42/56 = х/(70-х) 56х=42(70-х) 56х=2940-42х 98х=2940 х=30 см Второй отрезок 70-30 = 40 см ответ: 30 см и 40 см
Второй возможный вариант: меньшая сторона прямоугольника = 14 см большая - по прежнему 14+42=56 см Тогда длина диагонали будет равна √14²+56²=√3332=14√17 А пропорция примет вид: 14/56 = х/(14√17 -х) Отсюда х = (14√17)/5 - длина меньшего отрезка Длина большего отрезка = 14√17 - (14√17)/5 = (56√17)/5
длина большей стороны = 42 + 14 = 56 см
Найдем длину диагонали по теореме Пифагора:
√(42²+56²) = √4900 = 70
Рассмотрим треугольник, образованный сторонами прямоугольника и диагональю. Биссектриса делит сторону треугольника на отрезки, пропорциональные двум другим сторонам треугольника (свойство биссектрисы)
Обозначим один из отрезков = х, тогда второй отрезок = 70-х
Пропорция:
42 относится к 56 так же как х относится к 70-х
42/56 = х/(70-х)
56х=42(70-х)
56х=2940-42х
98х=2940
х=30 см
Второй отрезок 70-30 = 40 см
ответ: 30 см и 40 см
Второй возможный вариант:
меньшая сторона прямоугольника = 14 см
большая - по прежнему 14+42=56 см
Тогда длина диагонали будет равна √14²+56²=√3332=14√17
А пропорция примет вид:
14/56 = х/(14√17 -х)
Отсюда х = (14√17)/5 - длина меньшего отрезка
Длина большего отрезка = 14√17 - (14√17)/5 = (56√17)/5